Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment
- URL: http://arxiv.org/abs/2406.13216v1
- Date: Wed, 19 Jun 2024 04:57:35 GMT
- Title: Combining Optimal Transport and Embedding-Based Approaches for More Expressiveness in Unsupervised Graph Alignment
- Authors: Songyang Chen, Yu Liu, Lei Zou, Zexuan Wang, Youfang Lin, Yuxing Chen, Anqun Pan,
- Abstract summary: Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features.
We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness.
We are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching.
- Score: 19.145556156889064
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised graph alignment finds the one-to-one node correspondence between a pair of attributed graphs by only exploiting graph structure and node features. One category of existing works first computes the node representation and then matches nodes with close embeddings, which is intuitive but lacks a clear objective tailored for graph alignment in the unsupervised setting. The other category reduces the problem to optimal transport (OT) via Gromov-Wasserstein (GW) learning with a well-defined objective but leaves a large room for exploring the design of transport cost. We propose a principled approach to combine their advantages motivated by theoretical analysis of model expressiveness. By noticing the limitation of discriminative power in separating matched and unmatched node pairs, we improve the cost design of GW learning with feature transformation, which enables feature interaction across dimensions. Besides, we propose a simple yet effective embedding-based heuristic inspired by the Weisfeiler-Lehman test and add its prior knowledge to OT for more expressiveness when handling non-Euclidean data. Moreover, we are the first to guarantee the one-to-one matching constraint by reducing the problem to maximum weight matching. The algorithm design effectively combines our OT and embedding-based predictions via stacking, an ensemble learning strategy. We propose a model framework named \texttt{CombAlign} integrating all the above modules to refine node alignment progressively. Through extensive experiments, we demonstrate significant improvements in alignment accuracy compared to state-of-the-art approaches and validate the effectiveness of the proposed modules.
Related papers
- Optimal Partial Graph Matching [2.4378101048225735]
We propose a novel framework for partial graph matching inspired by optimal partial transport.
Our approach formulates an objective that enables partial assignments while incorporating matching biases.
We employ the Hungarian algorithm to achieve efficient, exact solutions with cubic time complexity.
arXiv Detail & Related papers (2024-10-22T05:56:57Z) - Robust Graph Matching Using An Unbalanced Hierarchical Optimal Transport Framework [30.05543844763625]
We propose a novel and robust graph matching method based on an unbalanced hierarchical optimal transport framework.
We make the first attempt to exploit cross-modal alignment in graph matching.
Experiments on various graph matching tasks demonstrate the superiority and robustness of our method compared to state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-18T16:16:53Z) - Efficient Link Prediction via GNN Layers Induced by Negative Sampling [92.05291395292537]
Graph neural networks (GNNs) for link prediction can loosely be divided into two broad categories.
First, emphnode-wise architectures pre-compute individual embeddings for each node that are later combined by a simple decoder to make predictions.
Second, emphedge-wise methods rely on the formation of edge-specific subgraph embeddings to enrich the representation of pair-wise relationships.
arXiv Detail & Related papers (2023-10-14T07:02:54Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
We investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph.
The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge.
We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions.
arXiv Detail & Related papers (2023-02-27T22:56:06Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - Collaborative likelihood-ratio estimation over graphs [55.98760097296213]
Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We develop this idea in a concrete non-parametric method that we call Graph-based Relative Unconstrained Least-squares Importance Fitting (GRULSIF)
We derive convergence rates for our collaborative approach that highlights the role played by variables such as the number of available observations per node, the size of the graph, and how accurately the graph structure encodes the similarity between tasks.
arXiv Detail & Related papers (2022-05-28T15:37:03Z) - Training Free Graph Neural Networks for Graph Matching [103.45755859119035]
TFGM is a framework to boost the performance of Graph Neural Networks (GNNs) based graph matching without training.
Applying TFGM on various GNNs shows promising improvements over baselines.
arXiv Detail & Related papers (2022-01-14T09:04:46Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
Graph neural networks (GNNs) use neighborhood aggregation as a core component that results in feature smoothing among nodes in proximity.
To tackle this problem, we strengthen the graph with two additional graph views, in which nodes are directly linked to those with the most similar features or local structures.
We propose a method that aims to maximize the agreement between representations across generated views and the original graph.
arXiv Detail & Related papers (2021-06-07T15:38:36Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Graph Contrastive Learning with Adaptive Augmentation [23.37786673825192]
We propose a novel graph contrastive representation learning method with adaptive augmentation.
Specifically, we design augmentation schemes based on node centrality measures to highlight important connective structures.
Our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts.
arXiv Detail & Related papers (2020-10-27T15:12:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.