Cross-Domain Few-Shot Classification via Learned Feature-Wise
Transformation
- URL: http://arxiv.org/abs/2001.08735v3
- Date: Mon, 9 Mar 2020 08:58:10 GMT
- Title: Cross-Domain Few-Shot Classification via Learned Feature-Wise
Transformation
- Authors: Hung-Yu Tseng, Hsin-Ying Lee, Jia-Bin Huang, Ming-Hsuan Yang
- Abstract summary: Few-shot classification aims to recognize novel categories with only few labeled images in each class.
Existing metric-based few-shot classification algorithms predict categories by comparing the feature embeddings of query images with those from a few labeled images.
While promising performance has been demonstrated, these methods often fail to generalize to unseen domains.
- Score: 109.89213619785676
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification aims to recognize novel categories with only few
labeled images in each class. Existing metric-based few-shot classification
algorithms predict categories by comparing the feature embeddings of query
images with those from a few labeled images (support examples) using a learned
metric function. While promising performance has been demonstrated, these
methods often fail to generalize to unseen domains due to large discrepancy of
the feature distribution across domains. In this work, we address the problem
of few-shot classification under domain shifts for metric-based methods. Our
core idea is to use feature-wise transformation layers for augmenting the image
features using affine transforms to simulate various feature distributions
under different domains in the training stage. To capture variations of the
feature distributions under different domains, we further apply a
learning-to-learn approach to search for the hyper-parameters of the
feature-wise transformation layers. We conduct extensive experiments and
ablation studies under the domain generalization setting using five few-shot
classification datasets: mini-ImageNet, CUB, Cars, Places, and Plantae.
Experimental results demonstrate that the proposed feature-wise transformation
layer is applicable to various metric-based models, and provides consistent
improvements on the few-shot classification performance under domain shift.
Related papers
- Multi-level Relation Learning for Cross-domain Few-shot Hyperspectral
Image Classification [8.78907921615878]
Cross-domain few-shot hyperspectral image classification focuses on learning prior knowledge from a large number of labeled samples from source domains.
This paper proposes to learn sample relations on different levels and take them into the model learning process.
arXiv Detail & Related papers (2023-11-02T13:06:03Z) - Unsupervised Domain Adaptation Using Feature Disentanglement And GCNs
For Medical Image Classification [5.6512908295414]
We propose an unsupervised domain adaptation approach that uses graph neural networks and, disentangled semantic and domain invariant structural features.
We test the proposed method for classification on two challenging medical image datasets with distribution shifts.
Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods.
arXiv Detail & Related papers (2022-06-27T09:02:16Z) - A Compositional Feature Embedding and Similarity Metric for
Ultra-Fine-Grained Visual Categorization [16.843126268445726]
Fine-grained visual categorization (FGVC) aims at classifying objects with small inter-class variances.
This paper proposes a novel compositional feature embedding and similarity metric ( CECS) for ultra-fine-grained visual categorization.
Experimental results on two ultra-FGVC datasets and one FGVC dataset with recent benchmark methods consistently demonstrate that the proposed CECS method achieves the state-the-art performance.
arXiv Detail & Related papers (2021-09-25T15:05:25Z) - A Hierarchical Transformation-Discriminating Generative Model for Few
Shot Anomaly Detection [93.38607559281601]
We devise a hierarchical generative model that captures the multi-scale patch distribution of each training image.
The anomaly score is obtained by aggregating the patch-based votes of the correct transformation across scales and image regions.
arXiv Detail & Related papers (2021-04-29T17:49:48Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
Few-shot image classification has been proposed to effectively use only a limited number of labeled examples to train models for new classes.
We propose a metric learning based method named Region Comparison Network (RCN), which is able to reveal how few-shot learning works.
We also present a new way to generalize the interpretability from the level of tasks to categories.
arXiv Detail & Related papers (2020-09-08T07:29:05Z) - Learning to Compose Hypercolumns for Visual Correspondence [57.93635236871264]
We introduce a novel approach to visual correspondence that dynamically composes effective features by leveraging relevant layers conditioned on the images to match.
The proposed method, dubbed Dynamic Hyperpixel Flow, learns to compose hypercolumn features on the fly by selecting a small number of relevant layers from a deep convolutional neural network.
arXiv Detail & Related papers (2020-07-21T04:03:22Z) - A Universal Representation Transformer Layer for Few-Shot Image
Classification [43.31379752656756]
Few-shot classification aims to recognize unseen classes when presented with only a small number of samples.
We consider the problem of multi-domain few-shot image classification, where unseen classes and examples come from diverse data sources.
Here, we propose a Universal Representation Transformer layer, that meta-learns to leverage universal features for few-shot classification.
arXiv Detail & Related papers (2020-06-21T03:08:00Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
We develop a transductive meta-learning method that uses unlabelled instances to improve few-shot image classification performance.
Our approach combines a regularized neural adaptive feature extractor to achieve improved test-time classification accuracy using unlabelled data.
arXiv Detail & Related papers (2020-06-17T05:42:47Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
We propose a new strategy based on feature selection, which is both simpler and more effective than previous feature adaptation approaches.
We show that a simple non-parametric classifier built on top of such features produces high accuracy and generalizes to domains never seen during training.
arXiv Detail & Related papers (2020-03-20T15:44:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.