An Overview of Fingerprint-Based Authentication: Liveness Detection and
Beyond
- URL: http://arxiv.org/abs/2001.09183v1
- Date: Fri, 24 Jan 2020 20:07:53 GMT
- Title: An Overview of Fingerprint-Based Authentication: Liveness Detection and
Beyond
- Authors: Filipp Demenschonok, Jason Harrigan, and Tamara Bonaci
- Abstract summary: We focus on methods to detect physical liveness, defined as techniques that can be used to ensure that a living human user is attempting to authenticate on a system.
We analyze how effective these methods are at preventing attacks where a malicious entity tries to trick a fingerprint-based authentication system to accept a fake finger as a real one.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we provide an overview of fingerprint sensing methods used for
authentication. We analyze the current fingerprint sensing technologies, from
algorithmic, as well as from hardware perspectives. We then focus on methods to
detect physical liveness, defined as techniques that can be used to ensure that
a living human user is attempting to authenticate on a system. We analyze how
effective these methods are at preventing attacks where a malicious entity
tries to trick a fingerprint-based authentication system to accept a fake
finger as a real one (spoofing attacks). We then identify broader attack points
against biometric data, such as fingerprints. Finally, we propose novel
measures to protect fingerprint data.
Related papers
- Fingerprinting and Tracing Shadows: The Development and Impact of Browser Fingerprinting on Digital Privacy [55.2480439325792]
Browser fingerprinting is a growing technique for identifying and tracking users online without traditional methods like cookies.
This paper gives an overview by examining the various fingerprinting techniques and analyzes the entropy and uniqueness of the collected data.
arXiv Detail & Related papers (2024-11-18T20:32:31Z) - Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction [1.2441902898414798]
We develop a deep learning-based segmentation tool for contactless fingerprint localization and segmentation.
In our evaluation, our segmentation method demonstrated an average mean absolute error (MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a labeling accuracy of 97.46%.
arXiv Detail & Related papers (2023-11-26T01:56:10Z) - Fingerprint Liveness Detection using Minutiae-Independent Dense Sampling
of Local Patches [0.0]
Fingerprint recognition and matching is a common form of user authentication.
Spoof detection and liveness detection algorithms are being researched as countermeasures to this security vulnerability.
This paper introduces a fingerprint anti-spoofing mechanism using machine learning.
arXiv Detail & Related papers (2023-04-11T16:11:44Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - FingerGAN: A Constrained Fingerprint Generation Scheme for Latent
Fingerprint Enhancement [23.67808389519383]
We propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem.
Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly.
arXiv Detail & Related papers (2022-06-26T14:05:21Z) - SpoofGAN: Synthetic Fingerprint Spoof Images [47.87570819350573]
A major limitation to advances in fingerprint spoof detection is the lack of publicly available, large-scale fingerprint spoof datasets.
This work aims to demonstrate the utility of synthetic (both live and spoof) fingerprints in supplying these algorithms with sufficient data.
arXiv Detail & Related papers (2022-04-13T16:27:27Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - SynFi: Automatic Synthetic Fingerprint Generation [23.334625222079634]
We introduce a new approach to automatically generate high-fidelity synthetic fingerprints at scale.
We show that our methodology is the first to generate fingerprints that are computationally indistinguishable from real ones.
arXiv Detail & Related papers (2020-02-16T07:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.