Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction
- URL: http://arxiv.org/abs/2311.15163v1
- Date: Sun, 26 Nov 2023 01:56:10 GMT
- Title: Deep Learning-Based Approaches for Contactless Fingerprints Segmentation
and Extraction
- Authors: M.G. Sarwar Murshed, Syed Konain Abbas, Sandip Purnapatra, Daqing Hou
and Faraz Hussain
- Abstract summary: We develop a deep learning-based segmentation tool for contactless fingerprint localization and segmentation.
In our evaluation, our segmentation method demonstrated an average mean absolute error (MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a labeling accuracy of 97.46%.
- Score: 1.2441902898414798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fingerprints are widely recognized as one of the most unique and reliable
characteristics of human identity. Most modern fingerprint authentication
systems rely on contact-based fingerprints, which require the use of
fingerprint scanners or fingerprint sensors for capturing fingerprints during
the authentication process. Various types of fingerprint sensors, such as
optical, capacitive, and ultrasonic sensors, employ distinct techniques to
gather and analyze fingerprint data. This dependency on specific hardware or
sensors creates a barrier or challenge for the broader adoption of fingerprint
based biometric systems. This limitation hinders the widespread adoption of
fingerprint authentication in various applications and scenarios. Border
control, healthcare systems, educational institutions, financial transactions,
and airport security face challenges when fingerprint sensors are not
universally available. To mitigate the dependence on additional hardware, the
use of contactless fingerprints has emerged as an alternative. Developing
precise fingerprint segmentation methods, accurate fingerprint extraction
tools, and reliable fingerprint matchers are crucial for the successful
implementation of a robust contactless fingerprint authentication system. This
paper focuses on the development of a deep learning-based segmentation tool for
contactless fingerprint localization and segmentation. Our system leverages
deep learning techniques to achieve high segmentation accuracy and reliable
extraction of fingerprints from contactless fingerprint images. In our
evaluation, our segmentation method demonstrated an average mean absolute error
(MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a
labeling accuracy of 97.46%. These results demonstrate the effectiveness of our
novel contactless fingerprint segmentation and extraction tools.
Related papers
- Latent fingerprint enhancement for accurate minutiae detection [8.996826918574463]
We propose a novel approach that uses generative adversary networks (GANs) to redefine Latent Fingerprint Enhancement (LFE)
By directly optimising the minutiae information during the generation process, the model produces enhanced latent fingerprints that exhibit exceptional fidelity to ground-truth instances.
Our framework integrates minutiae locations and orientation fields, ensuring the preservation of both local and structural fingerprint features.
arXiv Detail & Related papers (2024-09-18T08:35:31Z) - Synthetic Latent Fingerprint Generation Using Style Transfer [6.530917936319386]
We propose a simple and effective approach using style transfer and image blending to synthesize realistic latent fingerprints.
Our evaluation criteria and experiments demonstrate that the generated synthetic latent fingerprints preserve the identity information from the input contact-based fingerprints.
arXiv Detail & Related papers (2023-09-27T15:47:00Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - FIGO: Enhanced Fingerprint Identification Approach Using GAN and One
Shot Learning Techniques [0.0]
We propose a Fingerprint Identification approach based on Generative adversarial network and One-shot learning techniques.
First, we propose a Pix2Pix model to transform low-quality fingerprint images to a higher level of fingerprint images pixel by pixel directly in the fingerprint enhancement tier.
Second, we construct a fully automated fingerprint feature extraction model using a one-shot learning approach to differentiate each fingerprint from the others in the fingerprint identification process.
arXiv Detail & Related papers (2022-08-11T02:45:42Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - On the vulnerability of fingerprint verification systems to fake
fingerprint attacks [57.36125468024803]
A medium-size fake fingerprint database is described and two different fingerprint verification systems are evaluated on it.
Results for an optical and a thermal sweeping sensors are given.
arXiv Detail & Related papers (2022-07-11T12:22:52Z) - FingerGAN: A Constrained Fingerprint Generation Scheme for Latent
Fingerprint Enhancement [23.67808389519383]
We propose a new method that formulates the latent fingerprint enhancement as a constrained fingerprint generation problem.
Experimental results on two public latent fingerprint databases demonstrate that our method outperforms the state of the arts significantly.
arXiv Detail & Related papers (2022-06-26T14:05:21Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - Latent Fingerprint Registration via Matching Densely Sampled Points [100.53031290339483]
Existing latent fingerprint registration approaches are mainly based on establishing correspondences between minutiae.
We propose a non-minutia latent fingerprint registration method which estimates the spatial transformation between a pair of fingerprints.
The proposed method achieves the state-of-the-art registration performance, especially under challenging conditions.
arXiv Detail & Related papers (2020-05-12T15:51:59Z) - An Overview of Fingerprint-Based Authentication: Liveness Detection and
Beyond [0.0]
We focus on methods to detect physical liveness, defined as techniques that can be used to ensure that a living human user is attempting to authenticate on a system.
We analyze how effective these methods are at preventing attacks where a malicious entity tries to trick a fingerprint-based authentication system to accept a fake finger as a real one.
arXiv Detail & Related papers (2020-01-24T20:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.