Temporal Information Processing on Noisy Quantum Computers
- URL: http://arxiv.org/abs/2001.09498v2
- Date: Thu, 23 Jul 2020 04:04:39 GMT
- Title: Temporal Information Processing on Noisy Quantum Computers
- Authors: Jiayin Chen and Hendra I. Nurdin and Naoki Yamamoto
- Abstract summary: We propose quantum reservoir computing that harnesses complex dissipative quantum dynamics.
Proof-of-principle experiments on remotely accessed cloud-based superconducting quantum computers demonstrate that small and noisy quantum reservoirs can tackle high-order nonlinear temporal tasks.
Our results pave the path for attractive temporal processing applications of near-term gate-model quantum computers of increasing fidelity but without quantum error correction.
- Score: 3.4180402210147243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The combination of machine learning and quantum computing has emerged as a
promising approach for addressing previously untenable problems. Reservoir
computing is an efficient learning paradigm that utilizes nonlinear dynamical
systems for temporal information processing, i.e., processing of input
sequences to produce output sequences. Here we propose quantum reservoir
computing that harnesses complex dissipative quantum dynamics. Our class of
quantum reservoirs is universal, in that any nonlinear fading memory map can be
approximated arbitrarily closely and uniformly over all inputs by a quantum
reservoir from this class. We describe a subclass of the universal class that
is readily implementable using quantum gates native to current noisy gate-model
quantum computers. Proof-of-principle experiments on remotely accessed
cloud-based superconducting quantum computers demonstrate that small and noisy
quantum reservoirs can tackle high-order nonlinear temporal tasks. Our
theoretical and experimental results pave the path for attractive temporal
processing applications of near-term gate-model quantum computers of increasing
fidelity but without quantum error correction, signifying the potential of
these devices for wider applications including neural modeling, speech
recognition and natural language processing, going beyond static classification
and regression tasks.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Optimizing quantum noise-induced reservoir computing for nonlinear and
chaotic time series prediction [2.5427629797261297]
We make advancements to the quantum noise-induced reservoir, in which reservoir noise is used as a resource to generate expressive, nonlinear signals.
We show that with only a single noise model and small memory capacities, excellent simulation results were obtained on nonlinear benchmarks.
arXiv Detail & Related papers (2023-03-09T18:40:03Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Quantum Simulation on Noisy Superconducting Quantum Computers [0.0]
Quantum simulation is a potentially powerful application of quantum computing.
There is little introductory literature or demonstrations of the topic at a graduate or undergraduate student level.
This artificially raises the barrier to entry into the field which already has a limited workforce.
arXiv Detail & Related papers (2022-09-06T19:44:18Z) - Natural quantum reservoir computing for temporal information processing [4.785845498722406]
Reservoir computing is a temporal information processing system that exploits artificial or physical dissipative dynamics.
This paper proposes the use of real superconducting quantum computing devices as the reservoir, where the dissipative property is served by the natural noise added to the quantum bits.
arXiv Detail & Related papers (2021-07-13T01:58:57Z) - Experimental quantum memristor [0.5396401833457565]
We introduce and experimentally demonstrate a novel quantum-optical memristor based on integrated photonics and acts on single photons.
Our device could become a building block of immediate and near-term quantum neuromorphic architectures.
arXiv Detail & Related papers (2021-05-11T08:42:14Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Quantum reservoir computing with a single nonlinear oscillator [0.0]
We propose continuous variable quantum reservoir computing in a single nonlinear oscillator.
We demonstrate quantum-classical performance improvement, and identify its likely source: the nonlinearity of quantum measurement.
We study how the performance of our quantum reservoir depends on Hilbert space dimension, how it is impacted by injected noise, and briefly comment on its experimental implementation.
arXiv Detail & Related papers (2020-04-30T17:14:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.