Quantum Computer Does Not Need Coherent Quantum Access for Advantage
- URL: http://arxiv.org/abs/2503.02515v1
- Date: Tue, 04 Mar 2025 11:24:28 GMT
- Title: Quantum Computer Does Not Need Coherent Quantum Access for Advantage
- Authors: Nhat A. Nghiem,
- Abstract summary: A majority of quantum speedups rely on a subroutine in which classical information can be accessed in a coherent quantum manner.<n>We develop a quantum gradient descent algorithm for optimization, which is a fundamental technique that enjoys a wide range of applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Demonstrating quantum advantage has been a pressing challenge in the field. A majority of claimed quantum speedups rely on a subroutine in which classical information can be accessed in a coherent quantum manner, which imposes a crucial constraint on the practicability of these quantum algorithms. It has even been shown that without such an access, the quantum computer cannot be (exponentially) stronger than the classical counterpart for many problems. Thus, whether or not a quantum computer can be useful for practical applications has been central to investigation. In this work, we develop a quantum gradient descent algorithm for polynomial optimization, which is a fundamental technique that enjoys a wide range of applications. The algorithm's running time is logarithmical relative to the number of variables and consumes logarithmic numbers of qubits. Our method can work with many classes of polynomials and, most importantly, it removes the requirement for such a coherent quantum access. Thus, it implies great potential for near-term realization and particularly surpasses the belief that quantum speedup is only possible with strong input assumptions. As immediate applications, we show how to translate the capability of performing gradient descent into solving a linear system, performing least-square fitting, building a support vector machine, performing supervised cluster assignment, training neural network, and solving for ground-state/excited-state energy, performing principle component analysis, with end-to-end applications of quantum algorithms. Thus, our result adds another prominent example to some existing literature, provably demonstrating the quantum advantage toward highly practical problems, suggesting a new and promising prospect for the real-world application of a quantum computer.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Computable and noncomputable in the quantum domain: statements and conjectures [0.70224924046445]
We consider an approach to the question of describing a class of problems whose solution can be accelerated by a quantum computer.
The unitary operation that transforms the initial quantum state into the desired one must be decomposable into a sequence of one- and two-qubit gates.
arXiv Detail & Related papers (2024-03-25T15:47:35Z) - Scalable Quantum Algorithms for Noisy Quantum Computers [0.0]
This thesis develops two main techniques to reduce the quantum computational resource requirements.
The aim is to scale up application sizes on current quantum processors.
While the main focus of application for our algorithms is the simulation of quantum systems, the developed subroutines can further be utilized in the fields of optimization or machine learning.
arXiv Detail & Related papers (2024-03-01T19:36:35Z) - Realistic Runtime Analysis for Quantum Simplex Computation [0.4407851469168588]
We present a quantum analog for classical runtime analysis when solving real-world instances of important optimization problems.
We show that a practical quantum advantage for realistic problem sizes would require quantum gate operation times that are considerably below current physical limitations.
arXiv Detail & Related papers (2023-11-16T16:11:44Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - A Practitioner's Guide to Quantum Algorithms for Optimisation Problems [0.0]
NP-hard optimisation problems are common in industrial areas such as logistics and finance.
This paper aims to provide a comprehensive overview of the theory of quantum optimisation techniques.
It focuses on their near-term potential for noisy intermediate scale quantum devices.
arXiv Detail & Related papers (2023-05-12T08:57:36Z) - Expressive Quantum Supervised Machine Learning using Kerr-nonlinear
Parametric Oscillators [0.0]
Quantum machine learning with variational quantum algorithms (VQA) has been actively investigated as a practical algorithm in the noisy intermediate-scale quantum (NISQ) era.
Recent researches reveal that the data reuploading, which repeatedly encode classical data into quantum circuit, is necessary for obtaining the expressive quantum machine learning model.
We propose quantum machine learning with Kerrnon Parametric Hilberts (KPOs) as another promising quantum computing device.
arXiv Detail & Related papers (2023-05-01T07:01:45Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
We introduce a scalable procedure for harnessing classical computing resources to provide pre-optimized initializations for quantum circuits.
We show this method significantly improves the trainability and performance of PQCs on a variety of problems.
By demonstrating a means of boosting limited quantum resources using classical computers, our approach illustrates the promise of this synergy between quantum and quantum-inspired models in quantum computing.
arXiv Detail & Related papers (2022-08-29T15:24:03Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.