論文の概要: Using Simulated Data to Generate Images of Climate Change
- arxiv url: http://arxiv.org/abs/2001.09531v1
- Date: Sun, 26 Jan 2020 22:19:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 19:43:22.680691
- Title: Using Simulated Data to Generate Images of Climate Change
- Title(参考訳): シミュレーションデータを使って 気候変動のイメージを
- Authors: Gautier Cosne, Adrien Juraver, M\'elisande Teng, Victor Schmidt, Vahe
Vardanyan, Alexandra Luccioni and Yoshua Bengio
- Abstract要約: シミュレーションされた3次元環境からの画像を用いて,MUNITアーキテクチャによるドメイン適応タスクを改善する可能性について検討する。
気候変動の潜在的な影響に対する認識を高めるために、得られた画像を利用することを目指しています。
- 参考スコア(独自算出の注目度): 108.43373369198765
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generative adversarial networks (GANs) used in domain adaptation tasks have
the ability to generate images that are both realistic and personalized,
transforming an input image while maintaining its identifiable characteristics.
However, they often require a large quantity of training data to produce
high-quality images in a robust way, which limits their usability in cases when
access to data is limited. In our paper, we explore the potential of using
images from a simulated 3D environment to improve a domain adaptation task
carried out by the MUNIT architecture, aiming to use the resulting images to
raise awareness of the potential future impacts of climate change.
- Abstract(参考訳): ドメイン適応タスクで使用されるGANは、現実的かつパーソナライズされたイメージを生成し、その識別可能な特性を維持しながら入力画像を変換する能力を持つ。
しかし、多くの場合、高品質な画像を生成するために大量のトレーニングデータを必要とするため、データへのアクセスが制限された場合のユーザビリティが制限される。
本稿では,MUNIT アーキテクチャが実施する領域適応タスクを改善するために,シミュレーションされた3次元環境からの画像を使用することの可能性について検討する。
関連論文リスト
- Image-GS: Content-Adaptive Image Representation via 2D Gaussians [55.15950594752051]
本稿では,コンテンツ適応型画像表現であるImage-GSを提案する。
異方性2Dガウスアンをベースとして、Image-GSは高いメモリ効率を示し、高速なランダムアクセスをサポートし、自然なレベルのディテールスタックを提供する。
画像-GSの一般的な効率性と忠実性は、最近のニューラルイメージ表現と業界標準テクスチャ圧縮機に対して検証される。
この研究は、機械認識、アセットストリーミング、コンテンツ生成など、適応的な品質とリソース制御を必要とする新しいアプリケーションを開発するための洞察を与えてくれることを願っている。
論文 参考訳(メタデータ) (2024-07-02T00:45:21Z) - Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
ブリッジドトランスファー(ブリッジドトランスファー)と呼ばれる新しいフレームワークを導入する。このフレームワークは、当初、トレーニング済みモデルの微調整に合成画像を使用し、転送性を向上させる。
合成画像と実画像のスタイルアライメントを改善するために,データセットスタイルの逆変換方式を提案する。
提案手法は10の異なるデータセットと5つの異なるモデルで評価され、一貫した改善が示されている。
論文 参考訳(メタデータ) (2024-03-28T22:25:05Z) - Synthesizing Traffic Datasets using Graph Neural Networks [2.444217495283211]
本稿では,2次元交通シミュレーションと記録ジャンクション映像からフォトリアリスティックな画像を作成することによって,この「シムリアル」ギャップを埋める新しい手法を提案する。
本稿では,現実的な都市交通画像の作成を容易にするために,条件付き生成適応ネットワークとグラフニューラルネットワーク(GNN)を統合した新しい画像生成手法を提案する。
論文 参考訳(メタデータ) (2023-12-08T13:24:19Z) - Attention Mechanism for Contrastive Learning in GAN-based Image-to-Image
Translation [3.90801108629495]
本稿では,異なる領域にまたがって高品質な画像を生成可能なGANモデルを提案する。
実世界から取得した画像データと3Dゲームからのシミュレーション画像を用いて、Contrastive Learningを利用してモデルを自己指導的に訓練する。
論文 参考訳(メタデータ) (2023-02-23T14:23:23Z) - Enjoy Your Editing: Controllable GANs for Image Editing via Latent Space
Navigation [136.53288628437355]
コントロール可能なセマンティックイメージ編集により、ユーザーはクリック数回で画像属性全体を変更できる。
現在のアプローチでは、絡み合った属性編集、グローバルなイメージアイデンティティの変更、フォトリアリズムの低下に悩まされることが多い。
本稿では,主に定性評価に焦点を当てた先行研究とは異なり,制御可能な編集性能を測定するための定量的評価手法を提案する。
論文 参考訳(メタデータ) (2021-02-01T21:38:36Z) - A 3D GAN for Improved Large-pose Facial Recognition [3.791440300377753]
深層畳み込みニューラルネットワークを用いた顔認識は、顔画像の大きなデータセットの可用性に依存している。
近年の研究では、アイデンティティからポーズを離す方法が不十分であることが示されている。
本研究では,GAN発生器に3次元モーフィラブルモデルを組み込むことにより,野生画像から非線形テクスチャモデルを学習する。
これにより、新しい合成IDの生成と、アイデンティティを損なうことなくポーズ、照明、表現の操作が可能になります。
論文 参考訳(メタデータ) (2020-12-18T22:41:15Z) - Methodology for Building Synthetic Datasets with Virtual Humans [1.5556923898855324]
大規模なデータセットは、ディープニューラルネットワークの改善、ターゲットトレーニングに使用することができる。
特に,100の合成IDからなるデータセットにまたがる複数の2次元画像のレンダリングに3次元形態素顔モデルを用いる。
論文 参考訳(メタデータ) (2020-06-21T10:29:36Z) - On Leveraging Pretrained GANs for Generation with Limited Data [83.32972353800633]
生成的敵ネットワーク(GAN)は、しばしば(人間によって)実際の画像と区別できない非常に現実的な画像を生成することができる。
このように生成されたほとんどの画像はトレーニングデータセットには含まれておらず、GAN生成データでトレーニングセットを増強する可能性を示唆している。
我々は、大規模なデータセットで事前訓練された既存のGANモデルを活用し、トランスファーラーニングの概念に従って追加の知識を導入する。
限られたデータを用いた生成における提案手法の有効性を示すため, 広範囲な実験を行った。
論文 参考訳(メタデータ) (2020-02-26T21:53:36Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
我々は,入力画像の同一性を保った画像を生成するために,微細なカテゴリで画像を変換することを目的としている。
我々は、画像のアイデンティティと非関連要因をアンハングルするために、生成的敵ネットワークに基づくモデルを採用する。
CompCarsとMulti-PIEデータセットの実験では、我々のモデルが生成した画像のアイデンティティを、最先端の画像-画像変換モデルよりもはるかによく保存していることが示された。
論文 参考訳(メタデータ) (2020-01-12T05:26:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。