論文の概要: Methodology for Building Synthetic Datasets with Virtual Humans
- arxiv url: http://arxiv.org/abs/2006.11757v1
- Date: Sun, 21 Jun 2020 10:29:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 12:25:13.721964
- Title: Methodology for Building Synthetic Datasets with Virtual Humans
- Title(参考訳): 仮想人間を用いた合成データセット構築手法
- Authors: Shubhajit Basak, Hossein Javidnia, Faisal Khan, Rachel McDonnell,
Michael Schukat
- Abstract要約: 大規模なデータセットは、ディープニューラルネットワークの改善、ターゲットトレーニングに使用することができる。
特に,100の合成IDからなるデータセットにまたがる複数の2次元画像のレンダリングに3次元形態素顔モデルを用いる。
- 参考スコア(独自算出の注目度): 1.5556923898855324
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in deep learning methods have increased the performance of
face detection and recognition systems. The accuracy of these models relies on
the range of variation provided in the training data. Creating a dataset that
represents all variations of real-world faces is not feasible as the control
over the quality of the data decreases with the size of the dataset.
Repeatability of data is another challenge as it is not possible to exactly
recreate 'real-world' acquisition conditions outside of the laboratory. In this
work, we explore a framework to synthetically generate facial data to be used
as part of a toolchain to generate very large facial datasets with a high
degree of control over facial and environmental variations. Such large datasets
can be used for improved, targeted training of deep neural networks. In
particular, we make use of a 3D morphable face model for the rendering of
multiple 2D images across a dataset of 100 synthetic identities, providing full
control over image variations such as pose, illumination, and background.
- Abstract(参考訳): 近年のディープラーニング手法の進歩により,顔検出・認識システムの性能が向上している。
これらのモデルの精度は、トレーニングデータに提供される変動範囲に依存する。
データセットのサイズに応じてデータの品質の制御が減少するため、現実の顔のあらゆるバリエーションを表すデータセットを作成することは不可能である。
データの再現性は、実験室外で「実世界の」取得条件を正確に再現することはできないため、別の課題である。
本研究では,ツールチェインの一部として使用する顔データを生成するためのフレームワークを探索し,顔と環境の変動を高度に制御した,非常に大きな顔データセットを生成する。
このような大規模なデータセットは、ディープニューラルネットワークのトレーニングを改善するために使用できる。
特に,100個の合成idのデータセットにまたがる複数の2d画像のレンダリングに3dモーフィックな顔モデルを用い,ポーズや照明,背景などの画像のバリエーションを完全に制御する。
関連論文リスト
- 3D-VirtFusion: Synthetic 3D Data Augmentation through Generative Diffusion Models and Controllable Editing [52.68314936128752]
本研究では,事前学習された大規模基盤モデルのパワーを活用して,3次元ラベル付きトレーニングデータを自動的に生成する新しいパラダイムを提案する。
各ターゲットセマンティッククラスに対して、まず、拡散モデルとチャットGPT生成したテキストプロンプトを介して、様々な構造と外観の1つのオブジェクトの2D画像を生成する。
我々は、これらの拡張画像を3Dオブジェクトに変換し、ランダムな合成によって仮想シーンを構築する。
論文 参考訳(メタデータ) (2024-08-25T09:31:22Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
本研究では,実世界のパターンを持つ多様な合成シーンを生成可能なベイズネットワークを提案する。
一連の実験は、既存の最先端の事前学習手法に比べて、我々の手法が一貫した優位性を示す。
論文 参考訳(メタデータ) (2024-06-17T07:43:53Z) - Domain-Transferred Synthetic Data Generation for Improving Monocular Depth Estimation [9.812476193015488]
本稿では,3次元合成環境とCycleGANドメイン転送を用いたシミュレーションデータ生成手法を提案する。
本研究では,DenseDepth構造に基づく深度推定モデルを実データと模擬データの異なるトレーニングセットを用いて学習することにより,このデータ生成手法を,人気のNYUDepth V2データセットと比較する。
本稿では,Huskyロボットによる新たに収集した画像とLiDAR深度データを用いたモデルの性能評価を行い,GAN変換データを実世界のデータ,特に深度推定の有効な代替手段として有効であることを示す。
論文 参考訳(メタデータ) (2024-05-02T09:21:10Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - 3D Human Reconstruction in the Wild with Synthetic Data Using Generative Models [52.96248836582542]
本稿では,人間の画像とそれに対応する3Dメッシュアノテーションをシームレスに生成できるHumanWildという,最近の拡散モデルに基づく効果的なアプローチを提案する。
生成モデルを排他的に活用することにより,大規模な人体画像と高品質なアノテーションを生成し,実世界のデータ収集の必要性を解消する。
論文 参考訳(メタデータ) (2024-03-17T06:31:16Z) - Robust Category-Level 3D Pose Estimation from Synthetic Data [17.247607850702558]
CADモデルから生成されたオブジェクトポーズ推定のための新しい合成データセットであるSyntheticP3Dを紹介する。
逆レンダリングによるポーズ推定を行うニューラルネットワークモデルをトレーニングするための新しいアプローチ(CC3D)を提案する。
論文 参考訳(メタデータ) (2023-05-25T14:56:03Z) - A New Benchmark: On the Utility of Synthetic Data with Blender for Bare
Supervised Learning and Downstream Domain Adaptation [42.2398858786125]
コンピュータビジョンにおけるディープラーニングは、大規模ラベル付きトレーニングデータの価格で大きな成功を収めた。
制御不能なデータ収集プロセスは、望ましくない重複が存在する可能性のある非IIDトレーニングおよびテストデータを生成する。
これを回避するために、ドメインランダム化による3Dレンダリングによる合成データを生成する方法がある。
論文 参考訳(メタデータ) (2023-03-16T09:03:52Z) - 3DMM-RF: Convolutional Radiance Fields for 3D Face Modeling [111.98096975078158]
本稿では,1つのパスを1つのパスで合成し,必要なニューラルネットワークのレンダリングサンプルのみを合成するスタイルベースの生成ネットワークを提案する。
このモデルは、任意のポーズと照明の顔画像に正確に適合し、顔の特徴を抽出し、制御可能な条件下で顔を再レンダリングするために使用できることを示す。
論文 参考訳(メタデータ) (2022-09-15T15:28:45Z) - StyleGAN-Human: A Data-Centric Odyssey of Human Generation [96.7080874757475]
この研究は、データ中心の観点から、"データエンジニアリング"における複数の重要な側面を調査します。
さまざまなポーズやテクスチャを抽出した230万以上のサンプルで、大規模な人間の画像データセットを収集し、注釈付けします。
本稿では,データサイズ,データ分布,データアライメントといった,スタイルGANに基づく人為的生成のためのデータ工学における3つの重要な要素について精査する。
論文 参考訳(メタデータ) (2022-04-25T17:55:08Z) - Efficient Realistic Data Generation Framework leveraging Deep
Learning-based Human Digitization [0.0]
提案手法は、実際の背景画像として入力され、さまざまなポーズで人物を投入する。
対応するタスクのベンチマークと評価は、実データに対する補足として、合成データが効果的に使用できることを示している。
論文 参考訳(メタデータ) (2021-06-28T08:07:31Z) - A 3D GAN for Improved Large-pose Facial Recognition [3.791440300377753]
深層畳み込みニューラルネットワークを用いた顔認識は、顔画像の大きなデータセットの可用性に依存している。
近年の研究では、アイデンティティからポーズを離す方法が不十分であることが示されている。
本研究では,GAN発生器に3次元モーフィラブルモデルを組み込むことにより,野生画像から非線形テクスチャモデルを学習する。
これにより、新しい合成IDの生成と、アイデンティティを損なうことなくポーズ、照明、表現の操作が可能になります。
論文 参考訳(メタデータ) (2020-12-18T22:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。