論文の概要: Heterogeneous Learning from Demonstration
- arxiv url: http://arxiv.org/abs/2001.09569v2
- Date: Tue, 14 Apr 2020 19:29:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 07:30:38.869795
- Title: Heterogeneous Learning from Demonstration
- Title(参考訳): 実演からの異種学習
- Authors: Rohan Paleja, Matthew Gombolay
- Abstract要約: ベイズ推定に基づく異種実証から学習する枠組みを提案する。
実世界におけるStarCraft IIのゲームプレイデータセットに対する一組のアプローチを評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of human-robot systems able to leverage the strengths of both
humans and their robotic counterparts has been greatly sought after because of
the foreseen, broad-ranging impact across industry and research. We believe the
true potential of these systems cannot be reached unless the robot is able to
act with a high level of autonomy, reducing the burden of manual tasking or
teleoperation. To achieve this level of autonomy, robots must be able to work
fluidly with its human partners, inferring their needs without explicit
commands. This inference requires the robot to be able to detect and classify
the heterogeneity of its partners. We propose a framework for learning from
heterogeneous demonstration based upon Bayesian inference and evaluate a suite
of approaches on a real-world dataset of gameplay from StarCraft II. This
evaluation provides evidence that our Bayesian approach can outperform
conventional methods by up to 12.8$%$.
- Abstract(参考訳): 人間とロボットの双方の強みを活用できる人間ロボットシステムの開発は、産業や研究にまたがる先進的かつ幅広い影響により、大いに求められている。
ロボットが高度な自律性を持ち、手動作業や遠隔操作の負担を軽減しない限り、これらのシステムの真の可能性は到達できないと我々は信じている。
このレベルの自律性を達成するためには、ロボットは人間のパートナーとスムーズに働き、明確な命令なしでニーズを推測する必要がある。
この推論では、ロボットはパートナーの異質性を検出して分類する必要がある。
本稿では,ベイズ推定に基づく異種実演から学習するためのフレームワークを提案し,StarCraft IIの現実的なゲームプレイデータセットに対する一組のアプローチを評価する。
この評価は、ベイズ的アプローチが従来の手法を最大12.8$%$で上回ることを示す。
関連論文リスト
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
本稿では,インターネット規模のセマンティック知識を継承するために,事前学習された視覚言語モデル(VLM)上に構築された新しいフローマッチングアーキテクチャを提案する。
我々は,事前訓練後のタスクをゼロショットで実行し,人からの言語指導に追従し,微調整で新たなスキルを習得する能力の観点から,我々のモデルを評価した。
論文 参考訳(メタデータ) (2024-10-31T17:22:30Z) - Generalized Robot Learning Framework [10.03174544844559]
本稿では,様々なロボットや環境に容易に再現可能かつ伝達可能な,低コストなロボット学習フレームワークを提案する。
我々は,産業用ロボットにおいても,デプロイ可能な模倣学習をうまく適用できることを実証した。
論文 参考訳(メタデータ) (2024-09-18T15:34:31Z) - Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition [48.65867987106428]
本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
論文 参考訳(メタデータ) (2024-06-29T03:37:29Z) - Bridging Active Exploration and Uncertainty-Aware Deployment Using
Probabilistic Ensemble Neural Network Dynamics [11.946807588018595]
本稿では,活発な探索と不確実性を考慮した展開を橋渡しするモデルベース強化学習フレームワークを提案する。
探索と展開の対立する2つのタスクは、最先端のサンプリングベースのMPCによって最適化されている。
自動運転車と車輪付きロボットの両方で実験を行い、探索と展開の両方に有望な結果を示します。
論文 参考訳(メタデータ) (2023-05-20T17:20:12Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Generalizable Human-Robot Collaborative Assembly Using Imitation
Learning and Force Control [17.270360447188196]
本稿では,実演から学び,ポーズ推定を用いたロボット協調組立システムを提案する。
提案システムでは, ロボット組立シナリオにおいて, 物理的6DoFマニピュレータを用いて実験を行った。
論文 参考訳(メタデータ) (2022-12-02T20:35:55Z) - CoGrasp: 6-DoF Grasp Generation for Human-Robot Collaboration [0.0]
そこで我々は,人間を意識したロボットグリップを生成する,CoGraspと呼ばれる新しいディープニューラルネットワーク方式を提案する。
実際のロボット実験では,安定グリップの生成において約88%の成功率を達成した。
我々のアプローチは、安全で自然で社会的に認識された人間ロボットオブジェクトのコグラスピング体験を可能にします。
論文 参考訳(メタデータ) (2022-10-06T19:23:25Z) - Aligning Robot Representations with Humans [5.482532589225552]
主な問題は、ある環境で学んだ知識を別の環境に移す方法である。
我々は、人間が世界でシステム成功の究極的な評価者になるので、ロボットに重要なタスクの側面を伝えるのに最も適していると仮定する。
このアプローチをインタラクティブシステムの構築に利用し、高度な協調ロボットをより良く開発するための今後の方向性を提供する3つの分野を強調します。
論文 参考訳(メタデータ) (2022-05-15T15:51:05Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
我々は、自律的なデータ収集を通じて継続的に改善できる模倣学習システムを構築している。
我々は、ロボット自身の試行を、実際に試みたタスク以外のタスクのデモとして活用する。
従来の模倣学習のアプローチとは対照的に,本手法は,継続的改善のための疎い監視によるデータ収集を自律的に行うことができる。
論文 参考訳(メタデータ) (2020-02-25T18:56:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。