論文の概要: Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition
- arxiv url: http://arxiv.org/abs/2407.00299v4
- Date: Mon, 21 Oct 2024 15:56:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 17:02:11.029978
- Title: Human-Agent Joint Learning for Efficient Robot Manipulation Skill Acquisition
- Title(参考訳): 効率的なロボットマニピュレーションスキル獲得のためのヒューマンエージェント共同学習
- Authors: Shengcheng Luo, Quanquan Peng, Jun Lv, Kaiwen Hong, Katherine Rose Driggs-Campbell, Cewu Lu, Yong-Lu Li,
- Abstract要約: 本稿では,人間とロボットの協調学習システムについて紹介する。
これにより、ロボットエンドエフェクターの制御を学習支援エージェントと共有することができる。
これにより、ダウンストリームタスクにおいて、収集されたデータが十分な品質であることを保証しながら、人間の適応の必要性を減らすことができる。
- 参考スコア(独自算出の注目度): 48.65867987106428
- License:
- Abstract: Employing a teleoperation system for gathering demonstrations offers the potential for more efficient learning of robot manipulation. However, teleoperating a robot arm equipped with a dexterous hand or gripper, via a teleoperation system presents inherent challenges due to the task's high dimensionality, complexity of motion, and differences between physiological structures. In this study, we introduce a novel system for joint learning between human operators and robots, that enables human operators to share control of a robot end-effector with a learned assistive agent, simplifies the data collection process, and facilitates simultaneous human demonstration collection and robot manipulation training. As data accumulates, the assistive agent gradually learns. Consequently, less human effort and attention are required, enhancing the efficiency of the data collection process. It also allows the human operator to adjust the control ratio to achieve a trade-off between manual and automated control. We conducted experiments in both simulated environments and physical real-world settings. Through user studies and quantitative evaluations, it is evident that the proposed system could enhance data collection efficiency and reduce the need for human adaptation while ensuring the collected data is of sufficient quality for downstream tasks. \textit{For more details, please refer to our webpage https://norweig1an.github.io/HAJL.github.io/.
- Abstract(参考訳): デモ収集のための遠隔操作システムを利用することで、ロボット操作をより効率的に学習することが可能になる。
しかし,手やグリップを備えたロボットアームを遠隔操作する遠隔操作システムでは,タスクの高次元性,動作の複雑さ,生理構造の違いによる固有の課題が提示される。
本研究では,人間の操作者とロボットの協調学習システムを紹介し,人間の操作者がロボットのエンドエフェクタの制御を学習支援エージェントと共有し,データ収集プロセスを簡素化し,人間によるデモンストレーション収集とロボット操作の同時訓練を容易にする。
データが蓄積されると、補助エージェントは徐々に学習する。
その結果、人的労力や注意力の削減が要求され、データ収集プロセスの効率が向上する。
また、人間の操作者は手動制御と自動制御のトレードオフを達成するために制御比率を調整できる。
実環境と実環境の両方で実験を行った。
ユーザスタディと定量的評価により,本システムはデータ収集効率を向上し,収集したデータが下流作業に十分な品質であることを保証するとともに,人的適応の必要性を低減できることが明らかとなった。
詳細については、私たちのWebページ https://norweig1an.github.io/HAJL.github.io/を参照してください。
関連論文リスト
- Zero-Cost Whole-Body Teleoperation for Mobile Manipulation [8.71539730969424]
MoMa-Teleopは、ベースモーションを強化学習エージェントに委譲する新しい遠隔操作手法である。
提案手法は,様々なロボットやタスクに対して,タスク完了時間が大幅に短縮されることを実証する。
論文 参考訳(メタデータ) (2024-09-23T15:09:45Z) - VITAL: Visual Teleoperation to Enhance Robot Learning through Human-in-the-Loop Corrections [10.49712834719005]
本稿では,VITAL と呼ばれる双方向操作作業のための低コストな視覚遠隔操作システムを提案する。
われわれのアプローチは、安価なハードウェアとビジュアル処理技術を利用してデモを収集する。
実環境と模擬環境の両方を活用することにより,学習方針の一般化性と堅牢性を高める。
論文 参考訳(メタデータ) (2024-07-30T23:29:47Z) - Open-TeleVision: Teleoperation with Immersive Active Visual Feedback [17.505318269362512]
Open-TeleVisionは、オペレーターが立体的にロボットの周囲を積極的に知覚することを可能にする。
このシステムは操作者の腕と手の動きをロボットに反映し、没入感のある体験を作り出す。
本システムの有効性は,長期的かつ正確な4つの課題に対して,データ収集と模倣学習ポリシーの訓練によって検証する。
論文 参考訳(メタデータ) (2024-07-01T17:55:35Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
模倣と強化学習において、人間の監督コストは、ロボットが訓練できるデータの量を制限する。
本研究では,自己改善型ロボットシステムのための新しい設計手法であるMEDAL++を提案する。
ロボットは、タスクの実施と解除の両方を学ぶことで、自律的にタスクを練習し、同時にデモンストレーションから報酬関数を推論する。
論文 参考訳(メタデータ) (2023-03-02T18:51:38Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
本稿では,ユーザが新しいタスクを定義するための"プログラミング不要"なアプローチを提供する,視覚に基づくデクスタラスな操作システムについて述べる。
本システムには,最終タスクと中間タスクを画像例で定義するためのフレームワークが組み込まれている。
実世界における多段階物体操作の4指ロボットハンドラーによる実験結果
論文 参考訳(メタデータ) (2022-12-19T22:50:40Z) - PATO: Policy Assisted TeleOperation for Scalable Robot Data Collection [19.04536551595612]
Policy Assisted TeleOperation (PATO) は、学習された支援ポリシーを用いて、デモ収集プロセスの一部を自動化するシステムである。
PATOはデータ収集における反復的な動作を自律的に実行し、どのサブタスクや動作を実行するかが不確実な場合にのみ人間の入力を要求する。
論文 参考訳(メタデータ) (2022-12-09T07:38:09Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
本研究では,マイクロ進化的強化学習を用いて,操作スキルを人間からロボットに伝達可能であることを示す。
本稿では,ロボットの進化経路とポリシーを協調的に最適化する多次元進化経路探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-08T15:56:13Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - Learning Predictive Models From Observation and Interaction [137.77887825854768]
世界との相互作用から予測モデルを学ぶことで、ロボットのようなエージェントが世界がどのように働くかを学ぶことができる。
しかし、複雑なスキルのダイナミクスを捉えるモデルを学ぶことは大きな課題である。
本研究では,人間などの他のエージェントの観察データを用いて,トレーニングセットを増強する手法を提案する。
論文 参考訳(メタデータ) (2019-12-30T01:10:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。