論文の概要: Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2001.09684v2
- Date: Wed, 8 Sep 2021 07:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 07:48:47.785100
- Title: Challenges and Countermeasures for Adversarial Attacks on Deep
Reinforcement Learning
- Title(参考訳): 深層強化学習における敵攻撃の課題と対策
- Authors: Inaam Ilahi, Muhammad Usama, Junaid Qadir, Muhammad Umar Janjua, Ala
Al-Fuqaha, Dinh Thai Hoang, and Dusit Niyato
- Abstract要約: 深層強化学習(Dep Reinforcement Learning, DRL)は、周囲の環境に適応する優れた能力のおかげで、現実世界に多くの応用がある。
その大きな利点にもかかわらず、DRLは現実のクリティカルシステムやアプリケーションでの使用を妨げている敵攻撃の影響を受けやすい。
本稿では,DRLベースのシステムにおける新たな攻撃と,これらの攻撃を防御するための潜在的対策について述べる。
- 参考スコア(独自算出の注目度): 48.49658986576776
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Reinforcement Learning (DRL) has numerous applications in the real world
thanks to its outstanding ability in quickly adapting to the surrounding
environments. Despite its great advantages, DRL is susceptible to adversarial
attacks, which precludes its use in real-life critical systems and applications
(e.g., smart grids, traffic controls, and autonomous vehicles) unless its
vulnerabilities are addressed and mitigated. Thus, this paper provides a
comprehensive survey that discusses emerging attacks in DRL-based systems and
the potential countermeasures to defend against these attacks. We first cover
some fundamental backgrounds about DRL and present emerging adversarial attacks
on machine learning techniques. We then investigate more details of the
vulnerabilities that the adversary can exploit to attack DRL along with the
state-of-the-art countermeasures to prevent such attacks. Finally, we highlight
open issues and research challenges for developing solutions to deal with
attacks for DRL-based intelligent systems.
- Abstract(参考訳): 深層強化学習(drl)は、周囲の環境に素早く適応できる優れた能力のおかげで、現実世界に多くの応用がある。
その大きな利点にもかかわらず、DRLは敵の攻撃を受けやすく、その脆弱性が対処され緩和されない限り、実際のクリティカルシステムやアプリケーション(スマートグリッド、交通制御、自動運転車など)での使用を妨げている。
そこで本研究では,DRLベースのシステムにおける新興攻撃と,これらの攻撃を防御するための潜在的対策について,包括的調査を行った。
まず、DRLに関する基本的な背景と、機械学習技術に対する新たな敵攻撃について述べる。
次に、敵がDRLを攻撃するために利用する脆弱性と、そのような攻撃を防ぐための最先端の対策の詳細を調査する。
最後に、DRLベースのインテリジェントシステムに対する攻撃に対処するソリューションを開発するためのオープンな課題と研究課題を強調した。
関連論文リスト
- A Survey for Deep Reinforcement Learning Based Network Intrusion Detection [3.493620624883548]
本稿では,ネットワーク侵入検出における深部強化学習(DRL)の可能性と課題について考察する。
DRLモデルの性能は分析され、DRLは将来性を持っているが、近年の多くの技術は未解明のままである。
この論文は、現実世界のネットワークシナリオにおけるDRLの展開とテストを強化するための推奨事項で締めくくっている。
論文 参考訳(メタデータ) (2024-09-25T13:39:30Z) - A Novel Bifurcation Method for Observation Perturbation Attacks on Reinforcement Learning Agents: Load Altering Attacks on a Cyber Physical Power System [1.7887848708497243]
本研究は,分岐層を用いたグループ差分ロジッツ損失を用いた連続制御のための新しい攻撃手法を提案する。
現実的なスマートエネルギー環境における強力な勾配に基づく攻撃の影響を実証する。
論文 参考訳(メタデータ) (2024-07-06T20:55:24Z) - Towards Robust Policy: Enhancing Offline Reinforcement Learning with Adversarial Attacks and Defenses [19.918548094276005]
オフライン強化学習(RL)は、大量のオフラインデータに対する事前トレーニングポリシによって、RLに固有の高価でリスクの高いデータ探索の課題に対処する。
本稿では,先進的な敵攻撃と防御を活用して,オフラインRLモデルのロバスト性を高める枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-18T07:23:44Z) - Reinforcement Learning-Based Approaches for Enhancing Security and Resilience in Smart Control: A Survey on Attack and Defense Methods [0.3626013617212667]
強化学習(Reinforcement Learning、RL)は、現実世界の経験に基づいて意思決定を行うことを学ぶ。
本稿では、敵のRL脅威を概観し、これらのアプリケーションを保護するための効果的な防御戦略を概説する。
スマートグリッドとスマートホームシナリオに集中することにより、この調査は、ML開発者と研究者にRLアプリケーションを保護するために必要な洞察を与える。
論文 参考訳(メタデータ) (2024-02-23T21:48:50Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
本稿では, 正当性検証のレンズを用いて, 逆入力の特性を包括的に解析する。
このような摂動に対する感受性に基づいてモデルを分類するために、新しい計量である逆数率(Adversarial Rate)を導入する。
本分析は, 直交入力が所定のDRLシステムの安全性にどのように影響するかを実証的に示す。
論文 参考訳(メタデータ) (2024-02-07T21:58:40Z) - Deep Reinforcement Learning for Autonomous Cyber Defence: A Survey [0.0]
近年のサイバー攻撃の急増により、ネットワークを悪意ある行為者から守るための原則的な方法の必要性が高まっている。
深層強化学習は、これらの攻撃を緩和するための有望なアプローチとして現れている。
DRLはサイバー防衛に大きな可能性を示しているが、DRLが大規模に自律的なサイバー防衛問題に適用される前には、多くの課題が克服されなければならない。
論文 参考訳(メタデータ) (2023-10-11T16:24:14Z) - Improving Robustness of Reinforcement Learning for Power System Control
with Adversarial Training [71.7750435554693]
電力系統制御のために提案された最先端のRLエージェントが敵攻撃に対して脆弱であることを示す。
具体的には、敵のマルコフ決定プロセスを用いて攻撃方針を学習し、攻撃の有効性を実証する。
本稿では,RLエージェントの攻撃に対する堅牢性を高め,実行不可能な運用上の決定を回避するために,敵の訓練を利用することを提案する。
論文 参考訳(メタデータ) (2021-10-18T00:50:34Z) - Automating Privilege Escalation with Deep Reinforcement Learning [71.87228372303453]
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
論文 参考訳(メタデータ) (2021-10-04T12:20:46Z) - Robust Deep Reinforcement Learning through Adversarial Loss [74.20501663956604]
近年の研究では、深層強化学習剤は、エージェントの入力に対する小さな逆方向の摂動に弱いことが示されている。
敵攻撃に対する堅牢性を向上した強化学習エージェントを訓練するための原則的フレームワークであるRADIAL-RLを提案する。
論文 参考訳(メタデータ) (2020-08-05T07:49:42Z) - Robust Deep Reinforcement Learning against Adversarial Perturbations on
State Observations [88.94162416324505]
深部強化学習(DRL)エージェントは、自然な測定誤差や対向雑音を含む観測を通して、その状態を観察する。
観測は真の状態から逸脱するので、エージェントを誤解させ、準最適行動を起こすことができる。
本研究は, 従来の手法を, 対人訓練などの分類タスクの堅牢性向上に応用することは, 多くのRLタスクには有効でないことを示す。
論文 参考訳(メタデータ) (2020-03-19T17:59:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。