論文の概要: Automating Privilege Escalation with Deep Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2110.01362v1
- Date: Mon, 4 Oct 2021 12:20:46 GMT
- ステータス: 処理完了
- システム内更新日: 2021-10-05 15:12:01.176633
- Title: Automating Privilege Escalation with Deep Reinforcement Learning
- Title(参考訳): 深層強化学習によるプリビレージエスカレーションの自動化
- Authors: Kalle Kujanp\"a\"a, Willie Victor, Alexander Ilin
- Abstract要約: 本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端の強化学習アルゴリズムを用いて,局所的な特権エスカレーションを行うエージェントを提案する。
我々のエージェントは、実際の攻撃センサーデータを生成し、侵入検知システムの訓練と評価に利用できる。
- 参考スコア(独自算出の注目度): 71.87228372303453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI-based defensive solutions are necessary to defend networks and information
assets against intelligent automated attacks. Gathering enough realistic data
for training machine learning-based defenses is a significant practical
challenge. An intelligent red teaming agent capable of performing realistic
attacks can alleviate this problem. However, there is little scientific
evidence demonstrating the feasibility of fully automated attacks using machine
learning. In this work, we exemplify the potential threat of malicious actors
using deep reinforcement learning to train automated agents. We present an
agent that uses a state-of-the-art reinforcement learning algorithm to perform
local privilege escalation. Our results show that the autonomous agent can
escalate privileges in a Windows 7 environment using a wide variety of
different techniques depending on the environment configuration it encounters.
Hence, our agent is usable for generating realistic attack sensor data for
training and evaluating intrusion detection systems.
- Abstract(参考訳): AIベースの防御ソリューションは、ネットワークや情報資産をインテリジェントな自動攻撃から守るために必要である。
機械学習ベースの防御を訓練するための十分な現実的なデータを集めることは、重要な実践的課題である。
リアルアタックが可能なインテリジェントなレッドチームエージェントは、この問題を軽減することができる。
しかし、機械学習を用いた完全自動攻撃の可能性を示す科学的証拠はほとんどない。
本研究では,エージェントの訓練に深層強化学習を用いることで,悪意あるアクターの潜在的な脅威を実証する。
本稿では,最先端強化学習アルゴリズムを用いて局所特権エスカレーションを行うエージェントを提案する。
以上の結果から, 自律エージェントはwindows 7環境において, 環境設定に応じて多様な手法を用いて権限をエスカレーションできることがわかった。
したがって, 本エージェントは, 侵入検知システムを訓練し評価するために, 現実的なアタックセンサデータを生成することができる。
関連論文リスト
- Planning for Learning Object Properties [117.27898922118946]
我々は、物体特性を象徴的な計画問題として認識するために、ニューラルネットワークを自動的に訓練する問題を定式化する。
トレーニングデータセット作成と学習プロセスを自動化するための戦略を作成するために,計画手法を使用します。
シミュレーションと実環境の両方で実験的な評価を行う。
論文 参考訳(メタデータ) (2023-01-15T09:37:55Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Fixed Points in Cyber Space: Rethinking Optimal Evasion Attacks in the
Age of AI-NIDS [70.60975663021952]
ネットワーク分類器に対するブラックボックス攻撃について検討する。
我々は、アタッカー・ディフェンダーの固定点がそれ自体、複雑な位相遷移を持つ一般サムゲームであると主張する。
攻撃防御力学の研究には連続的な学習手法が必要であることを示す。
論文 参考訳(メタデータ) (2021-11-23T23:42:16Z) - Autonomous Attack Mitigation for Industrial Control Systems [25.894883701063055]
サイバー攻撃からコンピュータネットワークを守るには、警告や脅威情報に対するタイムリーな対応が必要である。
本稿では,大規模産業制御ネットワークにおける自律応答と回復に対する深層強化学習手法を提案する。
論文 参考訳(メタデータ) (2021-11-03T18:08:06Z) - Informing Autonomous Deception Systems with Cyber Expert Performance
Data [0.0]
本稿では、逆強化学習(IRL)を用いて攻撃行動、攻撃行動の有用性、究極的にはサイバー詐欺が阻止できる決定ポイントの洞察を得る可能性について検討する。
例えば、Tularosaの研究は、攻撃者がよく使う現実世界の技術とツールの実験データを提供し、そこからコアデータを活用して、自律的なサイバー防衛システムに通知する。
論文 参考訳(メタデータ) (2021-08-31T20:28:09Z) - The Feasibility and Inevitability of Stealth Attacks [63.14766152741211]
我々は、攻撃者が汎用人工知能システムにおける決定を制御できる新しい敵の摂動について研究する。
敵対的なデータ修正とは対照的に、ここで考慮する攻撃メカニズムには、AIシステム自体の変更が含まれる。
論文 参考訳(メタデータ) (2021-06-26T10:50:07Z) - An Empirical Review of Adversarial Defenses [0.913755431537592]
このようなシステムの基礎を形成するディープニューラルネットワークは、敵対攻撃と呼ばれる特定のタイプの攻撃に非常に影響を受けやすい。
ハッカーは、最小限の計算でも、敵対的な例(他のクラスに属するイメージやデータポイント)を生成し、そのようなアルゴリズムの基礎を崩壊させることができます。
本稿では,DropoutとDenoising Autoencodersの2つの効果的な手法を示し,そのような攻撃がモデルを騙すのを防ぐことに成功したことを示す。
論文 参考訳(メタデータ) (2020-12-10T09:34:41Z) - Enhanced Adversarial Strategically-Timed Attacks against Deep
Reinforcement Learning [91.13113161754022]
本稿では,DRLに基づくナビゲーションシステムに対して,選択した時間フレーム上の物理ノイズパターンを妨害することにより,タイミングに基づく逆方向戦略を導入する。
実験結果から, 対向タイミング攻撃は性能低下を引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2020-02-20T21:39:25Z) - NAttack! Adversarial Attacks to bypass a GAN based classifier trained to
detect Network intrusion [0.3007949058551534]
機械学習の台頭以前、攻撃を示唆するネットワーク異常は、巧妙なルールを用いて検出された。
ネットワーク異常に対する機械学習の進歩により、人間がサイバー防御システムをバイパスする方法を理解することは容易ではない。
本稿では, 分類器を構築し, ネットワークデータの逆例で訓練しても, 敵攻撃を利用でき, システムを破壊することができることを示す。
論文 参考訳(メタデータ) (2020-02-20T01:54:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。