論文の概要: DP-CGAN: Differentially Private Synthetic Data and Label Generation
- arxiv url: http://arxiv.org/abs/2001.09700v1
- Date: Mon, 27 Jan 2020 11:26:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 07:40:45.217105
- Title: DP-CGAN: Differentially Private Synthetic Data and Label Generation
- Title(参考訳): DP-CGAN:差分プライベートな合成データとラベル生成
- Authors: Reihaneh Torkzadehmahani, Peter Kairouz, Benedict Paten
- Abstract要約: 本稿では,新たなクリッピング・摂動戦略に基づくDP-CGANトレーニングフレームワークを提案する。
DP-CGANは, 1桁のエプシロンパラメータを用いて, MNISTデータセット上で視覚的, 経験的に有望な結果を生成することができることを示す。
- 参考スコア(独自算出の注目度): 18.485995499841
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Adversarial Networks (GANs) are one of the well-known models to
generate synthetic data including images, especially for research communities
that cannot use original sensitive datasets because they are not publicly
accessible. One of the main challenges in this area is to preserve the privacy
of individuals who participate in the training of the GAN models. To address
this challenge, we introduce a Differentially Private Conditional GAN (DP-CGAN)
training framework based on a new clipping and perturbation strategy, which
improves the performance of the model while preserving privacy of the training
dataset. DP-CGAN generates both synthetic data and corresponding labels and
leverages the recently introduced Renyi differential privacy accountant to
track the spent privacy budget. The experimental results show that DP-CGAN can
generate visually and empirically promising results on the MNIST dataset with a
single-digit epsilon parameter in differential privacy.
- Abstract(参考訳): GAN(Generative Adversarial Networks)は、画像を含む合成データを生成するよく知られたモデルの1つであり、特に、公開されていないため、オリジナルの機密データセットを使用できない研究コミュニティにとってである。
この領域における主な課題の1つは、ganモデルのトレーニングに参加する個人のプライバシーを守ることである。
この課題に対処するために,新たなクリッピングおよび摂動戦略に基づく差分プライベート条件gan(dp-cgan)トレーニングフレームワークを導入し,トレーニングデータセットのプライバシを保ちながら,モデルの性能を向上させる。
dp-cganは合成データと対応するラベルの両方を生成し、最近導入されたrenyi differential privacy accountantを利用して使用済みのプライバシー予算を追跡する。
実験の結果,DP-CGANは1桁のエプシロンパラメータを持つMNISTデータセット上で,視覚的かつ実証的に有望な結果を生成できることがわかった。
関連論文リスト
- PATE-TripleGAN: Privacy-Preserving Image Synthesis with Gaussian Differential Privacy [4.586288671392977]
PATE-TripleGANというプライバシ保護トレーニングフレームワークを提案する。
ラベル付きデータへの依存を減らすために、ラベル付きデータの事前分類を行う分類器が組み込まれている。
PATE-TripleGANは、トレーニングデータのプライバシを確保しながら、高品質なラベル付きイメージデータセットを生成することができる。
論文 参考訳(メタデータ) (2024-04-19T09:22:20Z) - A self-attention-based differentially private tabular GAN with high data
utility [23.99149917513586]
本稿では,DP-SACTGANについて述べる。
実験の結果,DP-SACTGANは元のデータの分布を正確にモデル化し,差分プライバシーの要件を効果的に満たしていることがわかった。
論文 参考訳(メタデータ) (2023-12-20T13:55:56Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Improving Correlation Capture in Generating Imbalanced Data using
Differentially Private Conditional GANs [2.2265840715792735]
DP-CGANSは,データ変換,サンプリング,コンディショニング,ネットワークトレーニングにより,現実的かつプライバシ保護データを生成する,微分プライベートな条件付きGANフレームワークである。
統計的類似性,機械学習性能,プライバシ測定の点から,3つの公開データセットと2つの実世界の個人健康データセットの最先端生成モデルを用いて,我々のモデルを広範囲に評価した。
論文 参考訳(メタデータ) (2022-06-28T06:47:27Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
そこで我々はDP-Sinkhornを提案する。DP-Sinkhornは個人データからデータ分布を差分プライバシで学習するための新しいトランスポートベース生成手法である。
差分的にプライベートな生成モデルを訓練するための既存のアプローチとは異なり、我々は敵の目的に頼らない。
論文 参考訳(メタデータ) (2021-11-01T18:10:21Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
本稿では, 深層生成モデルを用いたデータ・フレームワークを, 差分的にプライベートな方法で提案する。
当社のフレームワークでは、センシティブなデータは、厳格なプライバシ保証をワンショットで行うことで衛生化されています。
提案手法は理論的に性能が保証され,複数のデータセットに対する経験的評価により,提案手法が適切なプライバシーレベルで他の手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-08T18:00:01Z) - imdpGAN: Generating Private and Specific Data with Generative
Adversarial Networks [19.377726080729293]
imdpGANは、プライバシー保護と潜伏表現を同時に達成するエンドツーエンドフレームワークである。
我々は、ImdpGANが個々のデータポイントのプライバシを保持し、生成したサンプルの特異性を制御するために潜時符号を学習していることを示す。
論文 参考訳(メタデータ) (2020-09-29T08:03:32Z) - RDP-GAN: A R\'enyi-Differential Privacy based Generative Adversarial
Network [75.81653258081435]
GAN(Generative Adversarial Network)は,プライバシ保護の高い現実的なサンプルを生成する能力によって,近年注目を集めている。
しかし、医療記録や財務記録などの機密・私的な訓練例にGANを適用すると、個人の機密・私的な情報を漏らしかねない。
本稿では、学習中の損失関数の値にランダムノイズを慎重に付加することにより、GAN内の差分プライバシー(DP)を実現するR'enyi-differentially private-GAN(RDP-GAN)を提案する。
論文 参考訳(メタデータ) (2020-07-04T09:51:02Z) - GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators [74.16405337436213]
我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
論文 参考訳(メタデータ) (2020-06-15T10:01:01Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。