論文の概要: GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators
- arxiv url: http://arxiv.org/abs/2006.08265v2
- Date: Mon, 15 Mar 2021 13:54:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-21 03:52:03.584831
- Title: GS-WGAN: A Gradient-Sanitized Approach for Learning Differentially
Private Generators
- Title(参考訳): GS-WGAN: 差分自家発電機の学習方法
- Authors: Dingfan Chen, Tribhuvanesh Orekondy, Mario Fritz
- Abstract要約: 我々は、GS-WGAN(Gradient-sanitized Wasserstein Generative Adrial Networks)を提案する。
GS-WGANは、厳格なプライバシー保証を備えた機密データの衛生的な形式での公開を可能にする。
このアプローチは、複数のメトリクスにわたる最先端のアプローチよりも一貫して優れています。
- 参考スコア(独自算出の注目度): 74.16405337436213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The wide-spread availability of rich data has fueled the growth of machine
learning applications in numerous domains. However, growth in domains with
highly-sensitive data (e.g., medical) is largely hindered as the private nature
of data prohibits it from being shared. To this end, we propose
Gradient-sanitized Wasserstein Generative Adversarial Networks (GS-WGAN), which
allows releasing a sanitized form of the sensitive data with rigorous privacy
guarantees. In contrast to prior work, our approach is able to distort gradient
information more precisely, and thereby enabling training deeper models which
generate more informative samples. Moreover, our formulation naturally allows
for training GANs in both centralized and federated (i.e., decentralized) data
scenarios. Through extensive experiments, we find our approach consistently
outperforms state-of-the-art approaches across multiple metrics (e.g., sample
quality) and datasets.
- Abstract(参考訳): リッチなデータの広範にわたる利用は、多くの領域で機械学習アプリケーションの成長を促した。
しかし、高感度データ(例えば医療)を持つ領域の成長は、データのプライベートな性質が共有を妨げているため、ほとんど妨げられている。
そこで,本研究では,厳密なプライバシー保証を伴い,機密データの公衆衛生形態を解放することを可能にする,グラデーション・サニタイズされたwasserstein generative adversarial networks (gs-wgan)を提案する。
先行研究とは対照的に,グラデーション情報をより正確に歪め,より有用なサンプルを生成する深層モデルのトレーニングを可能にした。
さらに,本定式化により,集中型および連合型(分散型)データシナリオにおけるganのトレーニングが自然に可能になる。
広範な実験を通じて、我々のアプローチは複数のメトリクス(例:サンプルの品質)とデータセットにまたがる最先端のアプローチを一貫して上回ります。
関連論文リスト
- Privacy-preserving datasets by capturing feature distributions with Conditional VAEs [0.11999555634662634]
条件付き変分オートエンコーダ(CVAE)は、大きな事前学習された視覚基盤モデルから抽出された特徴ベクトルに基づいて訓練される。
本手法は, 医用領域と自然画像領域の両方において, 従来のアプローチよりも優れている。
結果は、データスカースおよびプライバシに敏感な環境におけるディープラーニングアプリケーションに大きな影響を与える生成モデルの可能性を強調している。
論文 参考訳(メタデータ) (2024-08-01T15:26:24Z) - Enhancing the Utility of Privacy-Preserving Cancer Classification using Synthetic Data [5.448470199971472]
深層学習は、乳がん検出において放射線科医を補助する大きな可能性を秘めている。
最適なモデルパフォーマンスを達成することは、データの可用性と共有の制限によって妨げられます。
従来のディープラーニングモデルでは、センシティブなトレーニング情報を不注意にリークすることができる。
この研究は、プライバシー保護のディープラーニング技術の有用性の定量化を探求するこれらの課題に対処する。
論文 参考訳(メタデータ) (2024-07-17T15:52:45Z) - Federated Learning Empowered by Generative Content [55.576885852501775]
フェデレートラーニング(FL)は、プライバシ保護方法でモデルのトレーニングに分散プライベートデータを活用可能にする。
本稿では,FedGCと呼ばれる新しいFLフレームワークを提案する。
我々は、さまざまなベースライン、データセット、シナリオ、モダリティをカバーする、FedGCに関する体系的な実証的研究を行う。
論文 参考訳(メタデータ) (2023-12-10T07:38:56Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
実世界のシナリオでは、トレーニング中に露出していない新しいドメインや異なるドメインのデータに遭遇することが一般的である。
ドメイン一般化(Domain Generalization, DG)は、モデルがこれまで見つからなかったドメインからのデータを扱うことを可能にする、有望な方向である。
本稿では,敵対的トレーニングを活用して無限のスタイルでトレーニングデータを生成する,AdverIN(Adversarial Intensity Attack)と呼ばれる新しいDG手法を提案する。
論文 参考訳(メタデータ) (2023-04-05T19:40:51Z) - Private Set Generation with Discriminative Information [63.851085173614]
異なるプライベートなデータ生成は、データプライバシの課題に対する有望な解決策である。
既存のプライベートな生成モデルは、合成サンプルの有用性に苦慮している。
我々は,最先端アプローチのサンプルユーティリティを大幅に改善する,シンプルで効果的な手法を提案する。
論文 参考訳(メタデータ) (2022-11-07T10:02:55Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
ディープラーニングモデルの分散トレーニングは、ネットワーク上でデータプライバシとデバイス上での学習を可能にする重要な要素である。
現実的な学習シナリオでは、異なるクライアントのローカルデータセットに異質性が存在することが最適化の課題となる。
本稿では,この分散学習の難しさを軽減するために,運動量に基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2021-02-09T11:27:14Z) - imdpGAN: Generating Private and Specific Data with Generative
Adversarial Networks [19.377726080729293]
imdpGANは、プライバシー保護と潜伏表現を同時に達成するエンドツーエンドフレームワークである。
我々は、ImdpGANが個々のデータポイントのプライバシを保持し、生成したサンプルの特異性を制御するために潜時符号を学習していることを示す。
論文 参考訳(メタデータ) (2020-09-29T08:03:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。