Handling noise in image deblurring via joint learning
- URL: http://arxiv.org/abs/2001.09730v1
- Date: Mon, 27 Jan 2020 12:59:52 GMT
- Title: Handling noise in image deblurring via joint learning
- Authors: Si Miao, Yongxin Zhu
- Abstract summary: Many blind deblurring methods assume blurred images are noise-free and perform unsatisfactorily on the blurry images with noise.
We propose a cascaded framework consisting of a denoiser subnetwork and a deblurring subnetwork.
Joint learning reduces the effect of the residual noise after denoising on deblurring, hence improves the robustness of deblurring to heavy noise.
- Score: 0.3407858371718068
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Currently, many blind deblurring methods assume blurred images are noise-free
and perform unsatisfactorily on the blurry images with noise. Unfortunately,
noise is quite common in real scenes. A straightforward solution is to denoise
images before deblurring them. However, even state-of-the-art denoisers cannot
guarantee to remove noise entirely. Slight residual noise in the denoised
images could cause significant artifacts in the deblurring stage. To tackle
this problem, we propose a cascaded framework consisting of a denoiser
subnetwork and a deblurring subnetwork. In contrast to previous methods, we
train the two subnetworks jointly. Joint learning reduces the effect of the
residual noise after denoising on deblurring, hence improves the robustness of
deblurring to heavy noise. Moreover, our method is also helpful for blur kernel
estimation. Experiments on the CelebA dataset and the GOPRO dataset show that
our method performs favorably against several state-of-the-art methods.
Related papers
- How to Best Combine Demosaicing and Denoising? [16.921538543268216]
demosaicing and denoising play a critical role in the raw imaging pipeline.
Most demosaicing methods address the demosaicing of noise free images.
The real problem is to jointly denoise and demosaic noisy raw images.
arXiv Detail & Related papers (2024-08-13T07:23:53Z) - NBD-GAP: Non-Blind Image Deblurring Without Clean Target Images [79.33220095067749]
Large amounts of blurry-clean image pairs are required for training to achieve good performance.
Deep networks often fail to perform well when the blurry images and the blur kernels during testing are very different from the ones used during training.
arXiv Detail & Related papers (2022-09-20T06:21:11Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Noise2Score: Tweedie's Approach to Self-Supervised Image Denoising
without Clean Images [35.41467558264341]
We present a novel approach, called Noise2Score, which reveals a missing link in order to unite different approaches.
Specifically, we show that image denoising problems without clean images can be addressed by finding the mode of the posterior distribution.
Our method then uses the recent finding that the score function can be stably estimated from the noisy images using the amortized residual denoising autoencoder.
arXiv Detail & Related papers (2021-06-13T14:41:09Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - NoiseBreaker: Gradual Image Denoising Guided by Noise Analysis [5.645552640953684]
This paper proposes a gradual denoising strategy that iteratively detects the dominating noise in an image, and removes it using a tailored denoiser.
The method provides an insight on the nature of the encountered noise, and it makes it possible to extend an existing denoiser with new noise nature.
arXiv Detail & Related papers (2020-02-18T11:09:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.