Stock Price Prediction Using Convolutional Neural Networks on a
Multivariate Timeseries
- URL: http://arxiv.org/abs/2001.09769v1
- Date: Fri, 10 Jan 2020 03:27:08 GMT
- Title: Stock Price Prediction Using Convolutional Neural Networks on a
Multivariate Timeseries
- Authors: Sidra Mehtab and Jaydip Sen
- Abstract summary: We build various predictive models using machine learning approaches, and then use those models to predict the Close value of NIFTY 50 for the year 2019.
For predicting the NIFTY index movement patterns, we use a number of classification methods, while for forecasting the actual Close values of NIFTY index, various regression models are built.
We exploit the power of CNN in forecasting the future NIFTY index values using three approaches which differ in number of variables used in forecasting.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Prediction of future movement of stock prices has been a subject matter of
many research work. In this work, we propose a hybrid approach for stock price
prediction using machine learning and deep learning-based methods. We select
the NIFTY 50 index values of the National Stock Exchange of India, over a
period of four years, from January 2015 till December 2019. Based on the NIFTY
data during the said period, we build various predictive models using machine
learning approaches, and then use those models to predict the Close value of
NIFTY 50 for the year 2019, with a forecast horizon of one week. For predicting
the NIFTY index movement patterns, we use a number of classification methods,
while for forecasting the actual Close values of NIFTY index, various
regression models are built. We, then, augment our predictive power of the
models by building a deep learning-based regression model using Convolutional
Neural Network with a walk-forward validation. The CNN model is fine-tuned for
its parameters so that the validation loss stabilizes with increasing number of
iterations, and the training and validation accuracies converge. We exploit the
power of CNN in forecasting the future NIFTY index values using three
approaches which differ in number of variables used in forecasting, number of
sub-models used in the overall models and, size of the input data for training
the models. Extensive results are presented on various metrics for all
classification and regression models. The results clearly indicate that
CNN-based multivariate forecasting model is the most effective and accurate in
predicting the movement of NIFTY index values with a weekly forecast horizon.
Related papers
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - GraphCNNpred: A stock market indices prediction using a Graph based deep learning system [0.0]
We give a graph neural network based convolutional neural network (CNN) model, that can be applied on diverse source of data, in the attempt to extract features to predict the trends of indices of textS&textP 500, NASDAQ, DJI, NYSE, and RUSSEL.
Experiments show that the associated models improve the performance of prediction in all indices over the baseline algorithms by about $4% text to 15%$, in terms of F-measure.
arXiv Detail & Related papers (2024-07-04T09:14:24Z) - F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
We formulate the demand prediction as a meta-learning problem and develop the Feature-based First-Order Model-Agnostic Meta-Learning (F-FOMAML) algorithm.
By considering domain similarities through task-specific metadata, our model improved generalization, where the excess risk decreases as the number of training tasks increases.
Compared to existing state-of-the-art models, our method demonstrates a notable improvement in demand prediction accuracy, reducing the Mean Absolute Error by 26.24% on an internal vending machine dataset and by 1.04% on the publicly accessible JD.com dataset.
arXiv Detail & Related papers (2024-06-23T21:28:50Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
This paper will review many deep learning algorithms for stock price forecasting. We use a record of s&p 500 index data for training and testing.
It will discuss various models, including the Auto regression integration moving average model, the Recurrent neural network model, the long short-term model, the convolutional neural network model, and the full convolutional neural network model.
arXiv Detail & Related papers (2024-02-08T16:45:01Z) - Human Trajectory Prediction via Neural Social Physics [63.62824628085961]
Trajectory prediction has been widely pursued in many fields, and many model-based and model-free methods have been explored.
We propose a new method combining both methodologies based on a new Neural Differential Equation model.
Our new model (Neural Social Physics or NSP) is a deep neural network within which we use an explicit physics model with learnable parameters.
arXiv Detail & Related papers (2022-07-21T12:11:18Z) - Datamodels: Predicting Predictions from Training Data [86.66720175866415]
We present a conceptual framework, datamodeling, for analyzing the behavior of a model class in terms of the training data.
We show that even simple linear datamodels can successfully predict model outputs.
arXiv Detail & Related papers (2022-02-01T18:15:24Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Stock Price Prediction Using CNN and LSTM-Based Deep Learning Models [0.0]
This paper presents a suite of deep learning based models for stock price prediction.
We use the historical records of the NIFTY 50 index listed in the National Stock Exchange of India.
Our proposition includes two regression models built on convolutional neural networks and three long and short term memory network based predictive models.
arXiv Detail & Related papers (2020-10-22T03:09:07Z) - Stock Price Prediction Using Machine Learning and LSTM-Based Deep
Learning Models [1.335161061703997]
We propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models.
We have used NIFTY 50 index values of the National Stock Exchange (NSE) of India during the period December 29, 2014 till July 31, 2020.
We exploit the power of LSTM regression models in forecasting the future NIFTY 50 open values using four different models that differ in their architecture and in the structure of their input data.
arXiv Detail & Related papers (2020-09-20T20:32:33Z) - Beyond Point Estimate: Inferring Ensemble Prediction Variation from
Neuron Activation Strength in Recommender Systems [21.392694985689083]
Ensemble method is one state-of-the-art benchmark for prediction uncertainty estimation.
We observe that prediction variations come from various randomness sources.
We propose to infer prediction variation from neuron activation strength and demonstrate the strong prediction power from activation strength features.
arXiv Detail & Related papers (2020-08-17T00:08:27Z) - ProphetNet: Predicting Future N-gram for Sequence-to-Sequence
Pre-training [85.35910219651572]
We present a new sequence-to-sequence pre-training model called ProphetNet.
It introduces a novel self-supervised objective named future n-gram prediction.
We conduct experiments on CNN/DailyMail, Gigaword, and SQuAD 1.1 benchmarks for abstractive summarization and question generation tasks.
arXiv Detail & Related papers (2020-01-13T05:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.