論文の概要: DALC: Distributed Automatic LSTM Customization for Fine-Grained Traffic
Speed Prediction
- arxiv url: http://arxiv.org/abs/2001.09821v2
- Date: Tue, 4 Feb 2020 12:44:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-07 05:06:47.650249
- Title: DALC: Distributed Automatic LSTM Customization for Fine-Grained Traffic
Speed Prediction
- Title(参考訳): DALC:微粒化交通速度予測のための分散LSTMカスタマイズ
- Authors: Ming-Chang Lee and Jia-Chun Lin
- Abstract要約: 本稿では,LSTMモデルを自動的に1つの検出器にカスタマイズするALCアルゴリズムを提案する。
ALCアルゴリズムに基づいて,大規模輸送ネットワークにおけるLSTMモデル毎にLSTMモデルをカスタマイズするために,分散自動LSTMカスタマイズ(DALC)と呼ばれる分散アプローチを導入する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the past decade, several approaches have been introduced for short-term
traffic prediction. However, providing fine-grained traffic prediction for
large-scale transportation networks where numerous detectors are geographically
deployed to collect traffic data is still an open issue. To address this issue,
in this paper, we formulate the problem of customizing an LSTM model for a
single detector into a finite Markov decision process and then introduce an
Automatic LSTM Customization (ALC) algorithm to automatically customize an LSTM
model for a single detector such that the corresponding prediction accuracy can
be as satisfactory as possible and the time consumption can be as low as
possible. Based on the ALC algorithm, we introduce a distributed approach
called Distributed Automatic LSTM Customization (DALC) to customize an LSTM
model for every detector in large-scale transportation networks. Our experiment
demonstrates that the DALC provides higher prediction accuracy than several
approaches provided by Apache Spark MLlib.
- Abstract(参考訳): 過去10年間で、短期交通予測のためのいくつかのアプローチが導入されている。
しかし,多数の検出器を地理的に配置して交通データを収集する大規模交通ネットワークでは,詳細な交通予測がまだ未解決である。
本稿では,単一検出器のlstmモデルを有限マルコフ決定プロセスにカスタマイズする問題を定式化し,それに対応する予測精度を可能な限り満足し,時間消費を極力低くできるように,単一検出器のlstmモデルを自動カスタマイズする自動lstmカスタマイズ(alc)アルゴリズムを導入する。
ALCアルゴリズムに基づいて,大規模輸送ネットワークにおけるLSTMモデル毎にLSTMモデルをカスタマイズするために,分散自動LSTMカスタマイズ(DALC)と呼ばれる分散アプローチを導入する。
本実験は, dalcがapache spark mllibが提供する複数のアプローチよりも高い予測精度を提供することを示す。
関連論文リスト
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
交通予測における大きな課題は、非常に異なる交通条件によって引き起こされる多様なデータ分散を扱うことである。
近位交通情報を考慮した交通予測のためのグラフ対応LLMを提案する。
我々は、新しいデータ分散に直面する際に、ドメイン適応を効率的にするための軽量なアプローチを採用する。
論文 参考訳(メタデータ) (2024-10-28T09:19:29Z) - Consistency Trajectory Models: Learning Probability Flow ODE Trajectory of Diffusion [56.38386580040991]
Consistency Trajectory Model (CTM) は Consistency Models (CM) の一般化である
CTMは、対戦訓練とスコアマッチング損失を効果的に組み合わせることで、パフォーマンスを向上させる。
CMとは異なり、CTMのスコア関数へのアクセスは、確立された制御可能/条件生成メソッドの採用を合理化することができる。
論文 参考訳(メタデータ) (2023-10-01T05:07:17Z) - AutoEn: An AutoML method based on ensembles of predefined Machine
Learning pipelines for supervised Traffic Forecasting [1.6242924916178283]
交通予測(TF)は、将来の交通状況を予測することで交通渋滞を緩和する能力により、関連性が高まっている。
TFは、モデル選択問題(MSP)として知られる機械学習パラダイムに大きな課題を提起する。
事前に定義されたMLパイプラインの集合からマルチクラス化アンサンブルを自動生成する,シンプルで効率的な手法であるAutoEnを紹介する。
論文 参考訳(メタデータ) (2023-03-19T18:37:18Z) - A Bi-LSTM Autoencoder Framework for Anomaly Detection -- A Case Study of
a Wind Power Dataset [2.094022863940315]
異常(英: Anomalies)とは、通常および同質の事象から逸脱するデータポイントまたはイベントを指す。
本研究では,Bi-LSTMアーキテクチャとAutoencoderを組み合わせた時系列異常検出フレームワークを提案する。
Bi-LSTM Autoencoderモデルは96.79%の分類精度を達成し、より一般的なLSTM Autoencoderモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-03-17T00:24:28Z) - Formal Controller Synthesis for Markov Jump Linear Systems with
Uncertain Dynamics [64.72260320446158]
マルコフジャンプ線形系に対する制御器の合成法を提案する。
本手法は,MJLSの離散(モードジャンピング)と連続(確率線形)の両方の挙動を捉える有限状態抽象化に基づいている。
本手法を複数の現実的なベンチマーク問題,特に温度制御と航空機の配送問題に適用する。
論文 参考訳(メタデータ) (2022-12-01T17:36:30Z) - Time-to-Green predictions for fully-actuated signal control systems with
supervised learning [56.66331540599836]
本稿では,集約信号とループ検出データを用いた時系列予測フレームワークを提案する。
我々は、最先端の機械学習モデルを用いて、将来の信号位相の持続時間を予測する。
スイスのチューリッヒの信号制御システムから得られた経験的データに基づいて、機械学習モデルが従来の予測手法より優れていることを示す。
論文 参考訳(メタデータ) (2022-08-24T07:50:43Z) - Score-based Generative Modeling in Latent Space [93.8985523558869]
スコアベース生成モデル(SGM)は,最近,サンプル品質と分布範囲の両面で顕著な結果を示した。
本稿では,Latent Score-based Generative Model (LSGM)を提案する。
データから潜在空間への移動により、より表現力のある生成モデルをトレーニングし、非連続データにSGMを適用し、よりスムーズなSGMをより小さな空間で学習することができる。
論文 参考訳(メタデータ) (2021-06-10T17:26:35Z) - Event-Driven Source Traffic Prediction in Machine-Type Communications
Using LSTM Networks [5.995091801910689]
イベント駆動ソーストラフィック予測のためのLong Short-Term Memory (LSTM)ベースのディープラーニングアプローチを提案する。
我々のモデルは、既存のベースラインソリューションよりも、リソースの節約と精度を約9%で上回ります。
論文 参考訳(メタデータ) (2021-01-12T09:31:18Z) - Unsupervised Online Anomaly Detection On Irregularly Sampled Or Missing
Valued Time-Series Data Using LSTM Networks [0.0]
異常検出について検討し,変長,不規則なサンプルシーケンス,あるいは欠落した値を含むシーケンスを処理するアルゴリズムを提案する。
しかし,本アルゴリズムは完全に教師なしであり,教師付きあるいは半教師付きケースに容易に拡張できる。
論文 参考訳(メタデータ) (2020-05-25T09:41:04Z) - Distributed Fine-Grained Traffic Speed Prediction for Large-Scale
Transportation Networks based on Automatic LSTM Customization and Sharing [0.27528170226206433]
DistPreは、大規模交通ネットワークのための分散きめ細かな交通速度予測スキームである。
D DistPreは、大規模な交通ネットワークにおいて、時間効率のLSTMカスタマイズと正確な交通速度予測を提供する。
論文 参考訳(メタデータ) (2020-05-10T21:24:23Z) - A Generative Learning Approach for Spatio-temporal Modeling in Connected
Vehicular Network [55.852401381113786]
本稿では,コネクテッドカーの無線アクセス遅延を実現するための総合的時間品質フレームワークであるLaMI(Latency Model Inpainting)を提案する。
LaMIはイメージインペイントと合成のアイデアを採用し、2段階の手順で欠落したレイテンシサンプルを再構築することができる。
特に、パッチ方式のアプローチを用いて各地域で収集されたサンプル間の空間的相関を初めて発見し、その後、原点および高度に相関したサンプルをバラエナオートコーダ(VAE)に供給する。
論文 参考訳(メタデータ) (2020-03-16T03:43:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。