論文の概要: Multi-modal Sentiment Analysis using Super Characters Method on
Low-power CNN Accelerator Device
- arxiv url: http://arxiv.org/abs/2001.10179v1
- Date: Tue, 28 Jan 2020 05:45:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 02:43:01.509284
- Title: Multi-modal Sentiment Analysis using Super Characters Method on
Low-power CNN Accelerator Device
- Title(参考訳): スーパーキャラクタ法による低消費電力CNN加速器のマルチモーダル感度解析
- Authors: Baohua Sun, Lin Yang, Hao Sha, Michael Lin
- Abstract要約: CNNドメイン特化加速器(CNN-DSA)は、低消費電力で低コストな大量生産を行っている。
本稿では,CNN-DSAにスーパーキャラクタ法を実装する。
- 参考スコア(独自算出の注目度): 14.746869920517653
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years NLP research has witnessed the record-breaking accuracy
improvement by DNN models. However, power consumption is one of the practical
concerns for deploying NLP systems. Most of the current state-of-the-art
algorithms are implemented on GPUs, which is not power-efficient and the
deployment cost is also very high. On the other hand, CNN Domain Specific
Accelerator (CNN-DSA) has been in mass production providing low-power and low
cost computation power. In this paper, we will implement the Super Characters
method on the CNN-DSA. In addition, we modify the Super Characters method to
utilize the multi-modal data, i.e. text plus tabular data in the CL-Aff
sharedtask.
- Abstract(参考訳): 近年NLP研究は、DNNモデルによる記録破りの精度向上を目撃している。
しかし、電力消費はnlpシステムのデプロイにおける現実的な懸念の1つである。
現在の最先端アルゴリズムのほとんどはgpu上に実装されているが、電力効率は高くなく、デプロイメントコストも極めて高い。
一方、CNNドメイン固有加速器(CNN-DSA)は、低消費電力で低コストな計算能力を備えた大量生産を行っている。
本稿では,cnn-dsa 上で super character メソッドを実装する。
さらに,マルチモーダルデータ,すなわち cl-aff sharedtask における表データを利用するために,super character メソッドを変更した。
関連論文リスト
- GhostRNN: Reducing State Redundancy in RNN with Cheap Operations [66.14054138609355]
本稿では,効率的なRNNアーキテクチャであるGhostRNNを提案する。
KWSとSEタスクの実験により、提案されたGhostRNNはメモリ使用量(40%)と計算コストを大幅に削減し、性能は類似している。
論文 参考訳(メタデータ) (2024-11-20T11:37:14Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
この研究は、DNN層の最適なデータフローを人間の努力なしに数秒で自動的に見つけるために、Dataflow Code Propagation (DCP)と呼ばれる効率的なデータ中心のアプローチを提案する。
DCPは、様々な最適化目標を最小化するために、望ましい勾配方向に向けてデータフローコードを効率的に更新する神経予測器を学習する。
例えば、追加のトレーニングデータを使用しないDCPは、数千のサンプルを使用して完全な検索を行うGAMAメソッドを超越している。
論文 参考訳(メタデータ) (2024-10-09T05:16:44Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
本稿では,Vehicular Edge Computingにおける共同DNNパーティショニング,タスクオフロード,リソース割り当ての問題を定式化する。
我々の目標は、時間とともにシステムの安定性を保証しながら、DNNベースのタスク完了時間を最小化することである。
拡散モデルの革新的利用を取り入れたマルチエージェント拡散に基づく深層強化学習(MAD2RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-06-11T06:31:03Z) - OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
設計上の違いを再検討し、スパースCNNが達成できることの限界をテストする。
本稿では,このギャップを埋めるために,適応受容場(親和性)と適応関係という2つの重要な要素を提案する。
この調査により、軽量モジュールを統合するネットワークのファミリーであるOmni-Adaptive 3D CNN(OA-CNN)が開発された。
論文 参考訳(メタデータ) (2024-03-21T14:06:38Z) - Context-aware Multi-Model Object Detection for Diversely Heterogeneous
Compute Systems [0.32634122554914]
ディープニューラルネットワーク(DNN)を用いた物体検出への1サイズ全アプローチは、計算資源の非効率な利用につながる。
本稿では,動的に変化する文脈情報や計算制約に応じて,様々なDNNベースのODモデルから連続的に選択するShiftを提案する。
提案手法は、最先端のGPUベースの単一モデルODアプローチと比較して、エネルギー使用率7.5倍、レイテンシ2.8倍の改善をもたらす。
論文 参考訳(メタデータ) (2024-02-12T05:38:11Z) - Are SNNs Truly Energy-efficient? $-$ A Hardware Perspective [7.539212567508529]
スパイキングニューラルネットワーク(SNN)は、そのエネルギー効率のよい機械学習能力に注目を集めている。
本研究では,SATAとSpikeSimという,大規模SNN推論のための2つのハードウェアベンチマークプラットフォームについて検討する。
論文 参考訳(メタデータ) (2023-09-06T22:23:22Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Weightless Neural Networks for Efficient Edge Inference [1.7882696915798877]
ウェイトレスニューラルネットワーク(WNN)は、テーブルルックアップを使用して推論を行う機械学習モデルのクラスである。
本稿では,WNN アーキテクチャ BTHOWeN を提案する。
BTHOWeNは、より優れたレイテンシとエネルギー効率を提供することで、大規模で成長するエッジコンピューティングセクターをターゲットにしている。
論文 参考訳(メタデータ) (2022-03-03T01:46:05Z) - Approximating a deep reinforcement learning docking agent using linear
model trees [0.0]
リニアモデルツリー(LMT)は、ドッキング操作を行う5つの制御入力を持つ自律表面車両のDNNポリシーを近似する。
LMTは透過的であり、入力特徴の特定の値と直接出力(制御アクション)を関連付けることができる。
シミュレーションでは、不透明なDNNポリシーが車両を制御し、LMTは並列に走行し、特徴属性の形で説明を提供する。
論文 参考訳(メタデータ) (2022-03-01T11:32:07Z) - Positive/Negative Approximate Multipliers for DNN Accelerators [3.1921317895626493]
本稿では,重みを近似乗算器の適切なモードにマッピングするフィルタ指向近似法を提案する。
提案手法では,4つの異なるデータセット上で平均7つのNNで18.33%のエネルギーゲインを達成し,最大精度の低下は1%に留まった。
論文 参考訳(メタデータ) (2021-07-20T09:36:24Z) - ShiftAddNet: A Hardware-Inspired Deep Network [87.18216601210763]
ShiftAddNetはエネルギー効率のよい乗算レスディープニューラルネットワークである。
エネルギー効率のよい推論とトレーニングの両方につながるが、表現能力は損なわれない。
ShiftAddNetは、DNNのトレーニングと推論において、80%以上のハードウェア量子化されたエネルギーコストを積極的に削減し、同等またはより良い精度を提供する。
論文 参考訳(メタデータ) (2020-10-24T05:09:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。