Counter-propagating photon pair generation in a nonlinear waveguide
- URL: http://arxiv.org/abs/2001.10418v1
- Date: Tue, 28 Jan 2020 15:43:42 GMT
- Title: Counter-propagating photon pair generation in a nonlinear waveguide
- Authors: Kai-Hong Luo, Vahid Ansari, Marcello Massaro, Matteo Santandrea,
Christof Eigner, Raimund Ricken, Harald Herrmann, and Christine Silberhorn
- Abstract summary: We report on the generation of single-photon pairs in a self-made periodically poled lithium niobate waveguide with a poling period on the same order of magnitude as the generated wavelength.
The single photons of the biphoton state bridge GHz and THz bandwidths with a separable joint temporal-spectral behavior.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counter-propagating parametric conversion processes in non-linear bulk
crystals have been shown to feature unique properties for efficient narrowband
frequency conversion. In quantum optics, the generation of photon pairs with a
counter-propagating parametric down-conversion process (PDC) in a waveguide,
where signal and idler photons propagate in opposite directions, offers unique
material-independent engineering capabilities. However, realizing
counter-propagating PDC necessitates quasi-phase-matching (QPM) with extremely
short poling periods. Here, we report on the generation of counter-propagating
single-photon pairs in a self-made periodically poled lithium niobate waveguide
with a poling period on the same order of magnitude as the generated
wavelength. The single photons of the biphoton state bridge GHz and THz
bandwidths with a separable joint temporal-spectral behavior. Furthermore, they
allow the direct observation of the temporal envelope of heralded single
photons with state-of-the art photon counters.
Related papers
- Polarization-entangled photon pairs generation from a single lithium niobate waveguide with single poling period [7.30580496740769]
We propose a simple and efficient scheme to generate polarization-entangled photon pairs based on type-0 SPDC.
By utilizing the strong dispersion engineering capabilities of thin-film waveguides, we can achieve both degenerate and highly detuned entangled photon pairs.
arXiv Detail & Related papers (2024-10-30T08:08:51Z) - Directionally Tunable Co- and Counter-Propagating Photon Pairs from a
Nonlinear Metasurface [0.0]
We show for the first time precise control of the emission angle of photon pairs generated from a nonlinear metasurface.
Our measurements show angularly tunable pair-generation with high coincidence-to-accidental ratio.
This work provides an important addition to the toolset of sub-wavelength thickness photon pair sources.
arXiv Detail & Related papers (2024-03-12T13:35:57Z) - Single-pass generation of widely-tunable frequency-domain entangled
photon pairs [0.0]
We demonstrate a technique that generates frequency-entangled photon pairs with high polarization definition by using a single-period nonlinear crystal and single pass configuration.
The generated photon pairs exhibit non-degenerate Hong-Ou-Mandel interference, indicating the presence of quantum entanglement in the frequency domain.
arXiv Detail & Related papers (2023-08-30T02:43:33Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Generation of spectrally factorable photon pairs via multi-order
quasi-phase-matched spontaneous parametric downconversion [0.0]
We experimentally demonstrate a technique to produce spectrally factorable photon pairs utilizing multi-order quasi-phase-matching conditions.
We show that telecom-band photon pairs produced by our custom-poled crystal are highly factorable with > 95% single-photon purity.
arXiv Detail & Related papers (2021-11-22T04:17:24Z) - Heisenberg treatment of multiphoton pulses in waveguide QED with
time-delayed feedback [62.997667081978825]
We propose a projection onto a complete set of states in the Hilbert space to decompose the multi-time correlations into single-time matrix elements.
We consider the paradigmatic example of a two-level system that couples to a semi-infinite waveguide and interacts with quantum light pulses.
arXiv Detail & Related papers (2021-11-04T12:29:25Z) - Complete conversion between one and two photons in nonlinear waveguides
with tailored dispersion [62.997667081978825]
We show theoretically how to control coherent conversion between a narrow-band pump photon and broadband photon pairs in nonlinear optical waveguides.
We reveal that complete deterministic conversion as well as pump-photon revival can be achieved at a finite propagation distance.
arXiv Detail & Related papers (2021-10-06T23:49:44Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Directional emission of down-converted photons from a dielectric
nano-resonator [55.41644538483948]
We theoretically describe the generation of photon pairs in the process of spontaneous parametric down-conversion.
We reveal that highly directional photon-pair generation can be observed utilising the nonlinear Kerker-type effect.
arXiv Detail & Related papers (2020-11-16T10:30:04Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Remotely projecting states of photonic temporal modes [0.0]
We show remote spectral shaping of single photon states and probe the coherence properties of two-photon quantum correlations in the time-frequency domain.
We control the temporal mode structure between the generated photon pairs and show remote state-projections over a range of time-frequency mode superpositions.
arXiv Detail & Related papers (2020-04-22T22:38:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.