Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems
- URL: http://arxiv.org/abs/2001.10494v1
- Date: Tue, 28 Jan 2020 17:51:07 GMT
- Title: Real-time Out-of-distribution Detection in Learning-Enabled
Cyber-Physical Systems
- Authors: Feiyang Cai and Xenofon Koutsoukos
- Abstract summary: Cyber-physical systems benefit by using machine learning components that can handle the uncertainty and variability of the real-world.
Deep neural networks, however, introduce new types of hazards that may impact system safety.
Out-of-distribution data may lead to a large error and compromise safety.
- Score: 1.4213973379473654
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cyber-physical systems (CPS) greatly benefit by using machine learning
components that can handle the uncertainty and variability of the real-world.
Typical components such as deep neural networks, however, introduce new types
of hazards that may impact system safety. The system behavior depends on data
that are available only during runtime and may be different than the data used
for training. Out-of-distribution data may lead to a large error and compromise
safety. The paper considers the problem of efficiently detecting
out-of-distribution data in CPS control systems. Detection must be robust and
limit the number of false alarms while being computational efficient for
real-time monitoring. The proposed approach leverages inductive conformal
prediction and anomaly detection for developing a method that has a
well-calibrated false alarm rate. We use variational autoencoders and deep
support vector data description to learn models that can be used efficiently
compute the nonconformity of new inputs relative to the training set and enable
real-time detection of out-of-distribution high-dimensional inputs. We
demonstrate the method using an advanced emergency braking system and a
self-driving end-to-end controller implemented in an open source simulator for
self-driving cars. The simulation results show very small number of false
positives and detection delay while the execution time is comparable to the
execution time of the original machine learning components.
Related papers
- Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - A Robust and Explainable Data-Driven Anomaly Detection Approach For
Power Electronics [56.86150790999639]
We present two anomaly detection and classification approaches, namely the Matrix Profile algorithm and anomaly transformer.
The Matrix Profile algorithm is shown to be well suited as a generalizable approach for detecting real-time anomalies in streaming time-series data.
A series of custom filters is created and added to the detector to tune its sensitivity, recall, and detection accuracy.
arXiv Detail & Related papers (2022-09-23T06:09:35Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Model2Detector:Widening the Information Bottleneck for
Out-of-Distribution Detection using a Handful of Gradient Steps [12.263417500077383]
Out-of-distribution detection is an important capability that has long eluded vanilla neural networks.
Recent advances in inference-time out-of-distribution detection help mitigate some of these problems.
We show how our method consistently outperforms the state-of-the-art in detection accuracy on popular image datasets.
arXiv Detail & Related papers (2022-02-22T23:03:40Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
In practice, it may make sense to ignore benign shifts, under which the performance of a deployed model does not degrade substantially.
We argue that a sensible method for firing off a warning has to both (a) detect harmful shifts while ignoring benign ones, and (b) allow continuous monitoring of model performance without increasing the false alarm rate.
arXiv Detail & Related papers (2021-10-12T17:21:41Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - Detection of Dataset Shifts in Learning-Enabled Cyber-Physical Systems
using Variational Autoencoder for Regression [1.5039745292757671]
We propose an approach to detect the dataset shifts effectively for regression problems.
Our approach is based on the inductive conformal anomaly detection and utilizes a variational autoencoder for regression model.
We demonstrate our approach by using an advanced emergency braking system implemented in an open-source simulator for self-driving cars.
arXiv Detail & Related papers (2021-04-14T03:46:37Z) - Out-of-Distribution Detection for Automotive Perception [58.34808836642603]
Neural networks (NNs) are widely used for object classification in autonomous driving.
NNs can fail on input data not well represented by the training dataset, known as out-of-distribution (OOD) data.
This paper presents a method for determining whether inputs are OOD, which does not require OOD data during training and does not increase the computational cost of inference.
arXiv Detail & Related papers (2020-11-03T01:46:35Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Detecting Adversarial Examples in Learning-Enabled Cyber-Physical
Systems using Variational Autoencoder for Regression [4.788163807490198]
It has been shown that deep neural networks (DNN) are not robust and adversarial examples can cause the model to make a false prediction.
The paper considers the problem of efficiently detecting adversarial examples in LECs used for regression in CPS.
We demonstrate the method using an advanced emergency braking system implemented in an open source simulator for self-driving cars.
arXiv Detail & Related papers (2020-03-21T11:15:33Z) - Assurance Monitoring of Cyber-Physical Systems with Machine Learning
Components [2.1320960069210484]
We investigate how to use the conformal prediction framework for assurance monitoring of Cyber-Physical Systems.
In order to handle high-dimensional inputs in real-time, we compute nonconformity scores using embedding representations of the learned models.
By leveraging conformal prediction, the approach provides well-calibrated confidence and can allow monitoring that ensures a bounded small error rate.
arXiv Detail & Related papers (2020-01-14T19:34:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.