Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection
- URL: http://arxiv.org/abs/2102.06481v1
- Date: Fri, 12 Feb 2021 12:27:02 GMT
- Title: Leveraging Benchmarking Data for Informed One-Shot Dynamic Algorithm
Selection
- Authors: Furong Ye, Carola Doerr, Thomas B\"ack
- Abstract summary: A key challenge in the application of evolutionary algorithms is the selection of an algorithm instance that best suits the problem at hand.
We analyze in this work how such prior performance data can be used to infer informed dynamic algorithm selection schemes for the solution of pseudo-Boolean optimization problems.
- Score: 0.9281671380673306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key challenge in the application of evolutionary algorithms in practice is
the selection of an algorithm instance that best suits the problem at hand.
What complicates this decision further is that different algorithms may be best
suited for different stages of the optimization process. Dynamic algorithm
selection and configuration are therefore well-researched topics in
evolutionary computation. However, while hyper-heuristics and parameter control
studies typically assume a setting in which the algorithm needs to be chosen
while running the algorithms, without prior information, AutoML approaches such
as hyper-parameter tuning and automated algorithm configuration assume the
possibility of evaluating different configurations before making a final
recommendation. In practice, however, we are often in a middle-ground between
these two settings, where we need to decide on the algorithm instance before
the run ("oneshot" setting), but where we have (possibly lots of) data
available on which we can base an informed decision.
We analyze in this work how such prior performance data can be used to infer
informed dynamic algorithm selection schemes for the solution of pseudo-Boolean
optimization problems. Our specific use-case considers a family of genetic
algorithms.
Related papers
- Stochastic Ratios Tracking Algorithm for Large Scale Machine Learning
Problems [0.7614628596146599]
We propose a novel algorithm for adaptive step length selection in the classical SGD framework.
Under reasonable conditions, the algorithm produces step lengths in line with well-established theoretical requirements.
We show that the algorithm can generate step lengths comparable to the best step length obtained from manual tuning.
arXiv Detail & Related papers (2023-05-17T06:22:11Z) - Per-run Algorithm Selection with Warm-starting using Trajectory-based
Features [5.073358743426584]
Per-instance algorithm selection seeks to recommend, for a given problem instance, one or several suitable algorithms.
We propose an online algorithm selection scheme which we coin per-run algorithm selection.
We show that our approach outperforms static per-instance algorithm selection.
arXiv Detail & Related papers (2022-04-20T14:30:42Z) - Trajectory-based Algorithm Selection with Warm-starting [2.3823600586675724]
We study the quality and accuracy of performance regression and algorithm selection models in the scenario of predicting different algorithm performances.
We show promising performance of the trajectory-based per-run algorithm selection with warm-starting.
arXiv Detail & Related papers (2022-04-13T14:00:55Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Algorithm Selection on a Meta Level [58.720142291102135]
We introduce the problem of meta algorithm selection, which essentially asks for the best way to combine a given set of algorithm selectors.
We present a general methodological framework for meta algorithm selection as well as several concrete learning methods as instantiations of this framework.
arXiv Detail & Related papers (2021-07-20T11:23:21Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Towards Meta-Algorithm Selection [78.13985819417974]
Instance-specific algorithm selection (AS) deals with the automatic selection of an algorithm from a fixed set of candidates.
We show that meta-algorithm-selection can indeed prove beneficial in some cases.
arXiv Detail & Related papers (2020-11-17T17:27:33Z) - Run2Survive: A Decision-theoretic Approach to Algorithm Selection based
on Survival Analysis [75.64261155172856]
survival analysis (SA) naturally supports censored data and offers appropriate ways to use such data for learning distributional models of algorithm runtime.
We leverage such models as a basis of a sophisticated decision-theoretic approach to algorithm selection, which we dub Run2Survive.
In an extensive experimental study with the standard benchmark ASlib, our approach is shown to be highly competitive and in many cases even superior to state-of-the-art AS approaches.
arXiv Detail & Related papers (2020-07-06T15:20:17Z) - Extreme Algorithm Selection With Dyadic Feature Representation [78.13985819417974]
We propose the setting of extreme algorithm selection (XAS) where we consider fixed sets of thousands of candidate algorithms.
We assess the applicability of state-of-the-art AS techniques to the XAS setting and propose approaches leveraging a dyadic feature representation.
arXiv Detail & Related papers (2020-01-29T09:40:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.