Causal discrete field theory for quantum gravity
- URL: http://arxiv.org/abs/2001.10819v1
- Date: Sun, 26 Jan 2020 18:38:36 GMT
- Title: Causal discrete field theory for quantum gravity
- Authors: K. V. Bayandin
- Abstract summary: We study integer values on directed edges of a self-similar graph with a propagation rule.
There is an infinite countable number of variants of the theory for a given self-similar graph depending on the choice of propagation rules.
It combines the elements of cellular automata, causal sets, loop quantum gravity, and causal dynamical triangulations to become an excellent candidate to describe quantum gravity at the Planck scale.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proposed theory of causally structured discrete fields studies integer
values on directed edges of a self-similar graph with a propagation rule, which
we define as a set of valid combinations of integer values and edge directions
around any vertex of the graph. There is an infinite countable number of
variants of the theory for a given self-similar graph depending on the choice
of propagation rules, some of these models can generate infinite uncountable
sets of patterns. This theory takes minimum assumptions of causality,
discreteness, locality, and determinism, as well as fundamental symmetries of
isotropy, CPT invariance, and charge conservation. It combines the elements of
cellular automata, causal sets, loop quantum gravity, and causal dynamical
triangulations to become an excellent candidate to describe quantum gravity at
the Planck scale. In addition to the self-consistent generation of spacetime
and metrics to describe gravity and an expanding closed Universe, the theory
allows for the many-worlds interpretation of quantum mechanics. We also
demonstrate how to get to unitary evolution in Hilbert space for a stationary
Universe with deterministic propagation.
Related papers
- Is Planckian discreteness observable in cosmology? [47.03992469282679]
A Planck scale inflationary era produces the scale invariant spectrum of inhomogeneities with very small tensor-to-scalar ratio of perturbations.
Here we evoke the possibility that some of the major puzzles in cosmology would have an explanation rooted in quantum gravity.
arXiv Detail & Related papers (2024-05-21T06:53:37Z) - Quantum Chaos on Edge [36.136619420474766]
We identify two different classes: the near edge physics of sparse'' and the near edge of dense'' chaotic systems.
The distinction lies in the ratio between the number of a system's random parameters and its Hilbert space dimension.
While the two families share identical spectral correlations at energy scales comparable to the level spacing, the density of states and its fluctuations near the edge are different.
arXiv Detail & Related papers (2024-03-20T11:31:51Z) - Completely Discretized, Finite Quantum Mechanics [0.0]
I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world.
The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space.
arXiv Detail & Related papers (2023-07-21T22:11:59Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Emergent spacetime from purely random structures [0.0]
We study the geometrical properties such as the dimensionality and the curvature emerging out of the connectivity properties of uniform random graphs.
Our approach leads to a unification of space and matter-energy, for which we propose a mass-energy-space equivalence.
arXiv Detail & Related papers (2022-10-03T14:24:24Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Discretised Hilbert Space and Superdeterminism [0.0]
In computational physics it is standard to approximate continuum systems with discretised representations.
We consider a specific discretisation of the continuum complex Hilbert space of quantum mechanics.
arXiv Detail & Related papers (2022-04-07T18:00:07Z) - The Ultraviolet Structure of Quantum Field Theories. Part 1: Quantum
Mechanics [0.0]
This paper fires the opening salvo in the systematic construction of the lattice-continuum correspondence.
The focus will be on quantum field theory in (0+1)D, i.e. quantum mechanics.
arXiv Detail & Related papers (2021-05-24T18:00:06Z) - Novel quantum phases on graphs using abelian gauge theory [0.0]
We build a class of frustration-free and gapped Hamiltonians based on discrete abelian gauge groups.
The resulting models have a ground state degeneracy that can be either a topological invariant or an extensive quantity.
We analyze excitations and identify anyon-like excitations that account for the topological entanglement entropy.
arXiv Detail & Related papers (2021-04-14T13:46:10Z) - Gentle Measurement as a Principle of Quantum Theory [9.137554315375919]
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics.
We show, within the framework of general probabilistic theories, that GMP imposes strong restrictions on the law of physics.
arXiv Detail & Related papers (2021-03-28T11:59:49Z) - Topological Quantum Gravity of the Ricci Flow [62.997667081978825]
We present a family of topological quantum gravity theories associated with the geometric theory of the Ricci flow.
First, we use BRST quantization to construct a "primitive" topological Lifshitz-type theory for only the spatial metric.
We extend the primitive theory by gauging foliation-preserving spacetime symmetries.
arXiv Detail & Related papers (2020-10-29T06:15:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.