Completely Discretized, Finite Quantum Mechanics
- URL: http://arxiv.org/abs/2307.11927v2
- Date: Wed, 1 Nov 2023 20:00:04 GMT
- Title: Completely Discretized, Finite Quantum Mechanics
- Authors: Sean M. Carroll
- Abstract summary: I propose a version of quantum mechanics featuring a discrete and finite number of states that is plausibly a model of the real world.
The model is based on standard unitary quantum theory of a closed system with a finite-dimensional Hilbert space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: I propose a version of quantum mechanics featuring a discrete and finite
number of states that is plausibly a model of the real world. The model is
based on standard unitary quantum theory of a closed system with a
finite-dimensional Hilbert space. Given certain simple conditions on the
spectrum of the Hamiltonian, Schr\"odinger evolution is periodic, and it is
straightforward to replace continuous time with a discrete version, with the
result that the system only visits a discrete and finite set of state vectors.
The biggest challenges to the viability of such a model come from cosmological
considerations. The theory may have implications for questions of mathematical
realism and finitism.
Related papers
- Finite frequentism explains quantum probability [0.0]
I show that frequentism can be extended in a natural way to a decoherent quantum history space.
The Gibbs concept of an infinite ensemble of gases is replaced by the quantum state expressed as a superposition of a finite number of decohering microstates.
arXiv Detail & Related papers (2024-04-19T15:37:02Z) - Groupoid and algebra of the infinite quantum spin chain [0.0]
We show how these algebras naturally arise in the Schwinger description of the quantum mechanics of an infinite spin chain.
In particular, we use the machinery of Dirac-Feynman-Schwinger states developed in recent works to introduce a dynamics based on the modular theory by Tomita-Takesaki.
arXiv Detail & Related papers (2023-02-02T12:24:23Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Discretised Hilbert Space and Superdeterminism [0.0]
In computational physics it is standard to approximate continuum systems with discretised representations.
We consider a specific discretisation of the continuum complex Hilbert space of quantum mechanics.
arXiv Detail & Related papers (2022-04-07T18:00:07Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Ontology in quantum mechanics [0.0]
It is suspected that the quantum evolution equations describing the micro-world as we know it are of a special kind that allows transformations to a special set of basis states in Hilbert space.
This would restore an ontological interpretation.
arXiv Detail & Related papers (2021-07-29T17:28:03Z) - Ruling out real-valued standard formalism of quantum theory [19.015836913247288]
A quantum game has been developed to distinguish standard quantum theory from its real-number analog.
We experimentally implement the quantum game based on entanglement swapping with a state-of-the-art fidelity of 0.952(1).
Our results disprove the real-number formulation and establish the indispensable role of complex numbers in the standard quantum theory.
arXiv Detail & Related papers (2021-03-15T03:56:13Z) - Generalized Probabilistic Theories in a New Light [0.0]
A new answer to the question of why our universe is quantum mechanical rather than classical will be presented.
This paper shows that there is still a possibility that there might be a deterministic level from which our universe emerges.
arXiv Detail & Related papers (2021-03-08T21:28:19Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - The Non-Hermitian quantum mechanics and its canonical structure [7.784991832712813]
The non-Hermitian Schr"odinger equation is re-expressed generally in the form of Hamilton's canonical equation without any approximation.
The conventional difficulties in non-Hermitian quantum mechanics are totally overcome by the reformulation.
arXiv Detail & Related papers (2020-05-21T05:52:53Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.