Deep Channel Learning For Large Intelligent Surfaces Aided mm-Wave
Massive MIMO Systems
- URL: http://arxiv.org/abs/2001.11085v3
- Date: Wed, 13 May 2020 10:50:37 GMT
- Title: Deep Channel Learning For Large Intelligent Surfaces Aided mm-Wave
Massive MIMO Systems
- Authors: Ahmet M. Elbir, A Papazafeiropoulos, P. Kourtessis, and S. Chatzinotas
- Abstract summary: This letter presents the first work introducing a deep learning framework for channel estimation in large intelligent surface (LIS)
A twin convolutional neural network (CNN) architecture is designed and it is fed with the received pilot signals to estimate both direct and cascaded channels.
In a multi-user scenario, each user has access to the CNN to estimate its own channel.
- Score: 3.2898781698366717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This letter presents the first work introducing a deep learning (DL)
framework for channel estimation in large intelligent surface (LIS) assisted
massive MIMO (multiple-input multiple-output) systems. A twin convolutional
neural network (CNN) architecture is designed and it is fed with the received
pilot signals to estimate both direct and cascaded channels. In a multi-user
scenario, each user has access to the CNN to estimate its own channel. The
performance of the proposed DL approach is evaluated and compared with
state-of-the-art DL-based techniques and its superior performance is
demonstrated.
Related papers
- Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - Deep Diffusion Models for Robust Channel Estimation [1.7259824817932292]
We introduce a novel approach for multiple-input multiple-output (MIMO) channel estimation using deep diffusion models.
Our method uses a deep neural network that is trained to estimate the gradient of the log-likelihood of wireless channels at any point in high-dimensional space.
arXiv Detail & Related papers (2021-11-16T01:32:11Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Learning to Perform Downlink Channel Estimation in Massive MIMO Systems [72.76968022465469]
We study downlink (DL) channel estimation in a Massive multiple-input multiple-output (MIMO) system.
A common approach is to use the mean value as the estimate, motivated by channel hardening.
We propose two novel estimation methods.
arXiv Detail & Related papers (2021-09-06T13:42:32Z) - CNN based Channel Estimation using NOMA for mmWave Massive MIMO System [0.0]
This paper proposes a convolutional neural network based approach to estimate the channel for millimeter wave (mmWave) systems built on a hybrid architecture.
A coarse estimation of the channel is first made from the received signal.
Numerical illustrations show that the proposed method outperforms least square (LS) estimate, minimum mean square error (MMSE) estimate and are close to the Cramer-Rao Bound (CRB)
arXiv Detail & Related papers (2021-08-01T05:33:55Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Model-Driven Deep Learning Based Channel Estimation and Feedback for
Millimeter-Wave Massive Hybrid MIMO Systems [61.78590389147475]
This paper proposes a model-driven deep learning (MDDL)-based channel estimation and feedback scheme for millimeter-wave (mmWave) systems.
To reduce the uplink pilot overhead for estimating the high-dimensional channels from a limited number of radio frequency (RF) chains, we propose to jointly train the phase shift network and the channel estimator as an auto-encoder.
Numerical results show that the proposed MDDL-based channel estimation and feedback scheme outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2021-04-22T13:34:53Z) - Federated Learning for Channel Estimation in Conventional and
RIS-Assisted Massive MIMO [12.487990897680422]
Channel estimation via machine learning requires model training on a dataset, which usually includes the received pilot signals as input and channel data as output.
In previous works, model training is mostly done via centralized learning (CL), where the whole training dataset is collected from the users at the base station (BS)
We propose a federated learning (FL) framework for channel estimation. We design a convolutional neural network (CNN) trained on the local datasets of the users without sending them to the BS.
We evaluate the performance for noisy and quantized model transmission and show that the proposed approach provides approximately 16 times lower overhead than CL
arXiv Detail & Related papers (2020-08-25T06:51:18Z) - Deep Denoising Neural Network Assisted Compressive Channel Estimation
for mmWave Intelligent Reflecting Surfaces [99.34306447202546]
This paper proposes a deep denoising neural network assisted compressive channel estimation for mmWave IRS systems.
We first introduce a hybrid passive/active IRS architecture, where very few receive chains are employed to estimate the uplink user-to-IRS channels.
The complete channel matrix can be reconstructed from the limited measurements based on compressive sensing.
arXiv Detail & Related papers (2020-06-03T12:18:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.