論文の概要: Which way? Direction-Aware Attributed Graph Embedding
- arxiv url: http://arxiv.org/abs/2001.11297v1
- Date: Thu, 30 Jan 2020 13:08:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 11:52:56.805394
- Title: Which way? Direction-Aware Attributed Graph Embedding
- Title(参考訳): どっちだ?
方向認識型グラフ埋め込み
- Authors: Zekarias T. Kefato, Nasrullah Sheikh, Alberto Montresor
- Abstract要約: グラフ埋め込みアルゴリズムは連続ベクトル空間内のグラフを効率的に表現するために用いられる。
しばしば見落とされがちな側面の1つは、グラフが向き付けられたかどうかである。
本研究は,DIAGRAMという,テキストに富んだ方向認識アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 2.429993132301275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph embedding algorithms are used to efficiently represent (encode) a graph
in a low-dimensional continuous vector space that preserves the most important
properties of the graph. One aspect that is often overlooked is whether the
graph is directed or not. Most studies ignore the directionality, so as to
learn high-quality representations optimized for node classification. On the
other hand, studies that capture directionality are usually effective on link
prediction but do not perform well on other tasks. This preliminary study
presents a novel text-enriched, direction-aware algorithm called DIAGRAM ,
based on a carefully designed multi-objective model to learn embeddings that
preserve the direction of edges, textual features and graph context of nodes.
As a result, our algorithm does not have to trade one property for another and
jointly learns high-quality representations for multiple network analysis
tasks. We empirically show that DIAGRAM significantly outperforms six
state-of-the-art baselines, both direction-aware and oblivious ones,on link
prediction and network reconstruction experiments using two popular datasets.
It also achieves a comparable performance on node classification experiments
against these baselines using the same datasets.
- Abstract(参考訳): グラフ埋め込みアルゴリズムは、グラフの最も重要な性質を保存する低次元連続ベクトル空間におけるグラフを効率的に表現(エンコード)するために用いられる。
しばしば見落とされがちな側面は、グラフが向き付けられたかどうかである。
ほとんどの研究は、ノード分類に最適化された高品質な表現を学ぶために方向性を無視している。
一方,方向性を捉えた研究はリンク予測に効果があるが,他のタスクではうまく機能しない。
本研究は, ノードのエッジ, テキスト特徴, グラフコンテキストを保存した埋め込みを学習するための, 慎重に設計された多目的モデルに基づく, DIAGRAM と呼ばれる新しいテキスト富化方向認識アルゴリズムを提案する。
その結果,本アルゴリズムは,ある特性を他の特性と交換する必要がなく,複数のネットワーク解析タスクの高品質表現を協調的に学習する。
2つの一般的なデータセットを用いたリンク予測とネットワーク再構築実験において,ダイアグラムが6つの最先端ベースラインを有意に上回っていることを実証的に示す。
また、同じデータセットを使用してこれらのベースラインに対してノード分類実験で同等のパフォーマンスを達成する。
関連論文リスト
- SimTeG: A Frustratingly Simple Approach Improves Textual Graph Learning [131.04781590452308]
テキストグラフ学習におけるフラストレーションに富んだアプローチであるSimTeGを提案する。
まず、下流タスクで予め訓練されたLM上で、教師付きパラメータ効率の微調整(PEFT)を行う。
次に、微調整されたLMの最後の隠れ状態を用いてノード埋め込みを生成する。
論文 参考訳(メタデータ) (2023-08-03T07:00:04Z) - A Simple and Scalable Graph Neural Network for Large Directed Graphs [11.792826520370774]
入力グラフ内のノード表現とエッジ方向認識の様々な組み合わせについて検討する。
そこで本研究では,A2DUGを簡易かつ包括的に分類する手法を提案する。
我々は、A2DUGが様々なデータセットで安定して動作し、最先端の手法と比較して11.29まで精度が向上することを示した。
論文 参考訳(メタデータ) (2023-06-14T06:24:58Z) - Subgraph Networks Based Contrastive Learning [5.736011243152416]
グラフコントラスト学習(GCL)は、注釈付きデータ不足の問題を解決する。
既存のGCL手法の多くは、グラフ拡張戦略や相互情報推定操作の設計に重点を置いている。
サブグラフネットワークに基づくコントラスト学習(SGNCL)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-06T08:52:44Z) - You Only Transfer What You Share: Intersection-Induced Graph Transfer
Learning for Link Prediction [79.15394378571132]
従来見過ごされていた現象を調査し、多くの場合、元のグラフに対して密に連結された補グラフを見つけることができる。
より密度の高いグラフは、選択的で有意義な知識を伝達するための自然なブリッジを提供する元のグラフとノードを共有することができる。
この設定をグラフインターセクション誘導トランスファーラーニング(GITL)とみなし,eコマースや学術共同オーサシップ予測の実践的応用に動機づけられた。
論文 参考訳(メタデータ) (2023-02-27T22:56:06Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
自己教師付きグラフ類似性学習のためのコントラストグラフマッチングネットワーク(CGMN)を提案する。
我々は,効率的なノード表現学習のために,クロスビューインタラクションとクロスグラフインタラクションという2つの戦略を用いる。
我々はノード表現をグラフ類似性計算のためのプール演算によりグラフレベル表現に変換する。
論文 参考訳(メタデータ) (2022-05-30T13:20:26Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
本稿では,重要なグラフ構造情報を活用するために,クロスビューグラフプーリング(Co-Pooling)手法を提案する。
クロスビュー相互作用、エッジビュープーリング、ノードビュープーリングにより、相互にシームレスに強化され、より情報的なグラフレベルの表現が学習される。
論文 参考訳(メタデータ) (2021-09-24T08:01:23Z) - Co-embedding of Nodes and Edges with Graph Neural Networks [13.020745622327894]
グラフ埋め込みは、高次元および非ユークリッド特徴空間でデータ構造を変換しエンコードする方法である。
CensNetは一般的なグラフ埋め込みフレームワークで、ノードとエッジの両方を潜在機能空間に埋め込む。
提案手法は,4つのグラフ学習課題における最先端のパフォーマンスを達成または一致させる。
論文 参考訳(メタデータ) (2020-10-25T22:39:31Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Sub-graph Contrast for Scalable Self-Supervised Graph Representation
Learning [21.0019144298605]
既存のグラフニューラルネットワークは、計算量やメモリコストが限られているため、完全なグラフデータで供給される。
textscSubg-Conは、中央ノードとそのサンプルサブグラフ間の強い相関を利用して、地域構造情報をキャプチャすることで提案される。
既存のグラフ表現学習アプローチと比較して、textscSubg-Conは、より弱い監視要件、モデル学習のスケーラビリティ、並列化において、顕著なパフォーマンス上のアドバンテージを持っています。
論文 参考訳(メタデータ) (2020-09-22T01:58:19Z) - Multilevel Graph Matching Networks for Deep Graph Similarity Learning [79.3213351477689]
グラフ構造オブジェクト間のグラフ類似性を計算するためのマルチレベルグラフマッチングネットワーク(MGMN)フレームワークを提案する。
標準ベンチマークデータセットの欠如を補うため、グラフグラフ分類とグラフグラフ回帰タスクの両方のためのデータセットセットを作成し、収集した。
総合的な実験により、MGMNはグラフグラフ分類とグラフグラフ回帰タスクの両方において、最先端のベースラインモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2020-07-08T19:48:19Z) - Unsupervised Graph Representation by Periphery and Hierarchical
Information Maximization [18.7475578342125]
グラフニューラルネットワークの発明により、ベクトル空間におけるノードとグラフ全体の表現の最先端性が向上した。
グラフ表現全体について、既存のグラフニューラルネットワークの大部分は、教師付き方法でグラフ分類損失に基づいてトレーニングされている。
本稿では,グラフ全体のベクトル表現を生成するための教師なしグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-06-08T15:50:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。