Realization and detection of non-ergodic critical phases in optical
Raman lattice
- URL: http://arxiv.org/abs/2001.11471v2
- Date: Tue, 11 Feb 2020 13:26:36 GMT
- Title: Realization and detection of non-ergodic critical phases in optical
Raman lattice
- Authors: Yucheng Wang, Long Zhang, Sen Niu, Dapeng Yu, Xiong-Jun Liu
- Abstract summary: The critical phases, being delocalized but non-ergodic, are fundamental phases which are different from both the many-body localization and ergodic extended quantum phases.
We propose to realize such critical phases with and without interaction based on a topological optical Raman lattice scheme.
- Score: 3.854232270779398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The critical phases, being delocalized but non-ergodic, are fundamental
phases which are different from both the many-body localization and ergodic
extended quantum phases, and have so far not been realized in experiment. Here
we propose to realize such critical phases with and without interaction based
on a topological optical Raman lattice scheme, which possesses one-dimensional
spin-orbit coupling and an incommensurate Zeeman potential. We demonstrate the
existence of both the noninteracting and many-body critical phases, which can
coexist with the topological phase, and show that the critical-localization
transition coincides with the topological phase boundary in noninteracting
regime. The dynamical detection of the critical phases is proposed and studied
in detail. Finally, we demonstrate how the proposed critical phases can be
achieved based on the current cold atom experiments. This work paves the way to
observe the novel critical phases.
Related papers
- Experimental observation of spontaneous symmetry breaking in a quantum phase transition [2.2706551270477613]
Spontaneous symmetry breaking plays a central role in understanding a large variety of phenomena associated with phase transitions.
We report an experimental demonstration of such a process with a quantum Rabi model engineered with a superconducting circuit.
Results demonstrate that the environment-induced decoherence plays a critical role in the SSB.
arXiv Detail & Related papers (2024-06-28T03:14:27Z) - Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Multicritical dissipative phase transitions in the anisotropic open quantum Rabi model [0.7499722271664147]
We investigate the nonequilibrium steady state of the anisotropic open quantum Rabi model.
We find a rich phase diagram resulting from the interplay between the anisotropy and the dissipation.
Our study enlarges the scope of critical phenomena that may occur in finite-component quantum systems.
arXiv Detail & Related papers (2023-11-19T15:13:57Z) - Softening of Majorana edge states by long-range couplings [77.34726150561087]
Long-range couplings in the Kitaev chain is shown to modify the universal scaling of topological states close to the critical point.
We prove that the Majorana states become increasingly delocalised at a universal rate which is only determined by the interaction range.
arXiv Detail & Related papers (2023-01-29T19:00:08Z) - Topological transitions of the generalized Pancharatnam-Berry phase [55.41644538483948]
We show that geometric phases can be induced by a sequence of generalized measurements implemented on a single qubit.
We demonstrate and study this transition experimentally employing an optical platform.
Our protocol can be interpreted in terms of environment-induced geometric phases.
arXiv Detail & Related papers (2022-11-15T21:31:29Z) - Foliated order parameter in a fracton phase transition [0.0]
We study phase transition in the X-cube model in the presence of a non-linear perturbation.
We show there is a first order quantum phase transition from a type I fracton phase to a magnetized phase.
We introduce a non-local order parameter in the form of a foliated operator which can characterize the above phase transition.
arXiv Detail & Related papers (2022-06-23T20:11:20Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Phase diagram of Rydberg-dressed atoms on two-leg square ladders:
Coupling supersymmetric conformal field theories on the lattice [52.77024349608834]
We investigate the phase diagram of hard-core bosons in two-leg ladders in the presence of soft-shoulder potentials.
We show how the competition between local and non-local terms gives rise to a phase diagram with liquid phases with dominant cluster, spin, and density-wave quasi-long-range ordering.
arXiv Detail & Related papers (2021-12-20T09:46:08Z) - Topological transitions with continuously monitored free fermions [68.8204255655161]
We show the presence of a topological phase transition that is of a different universality class than that observed in stroboscopic projective circuits.
We find that this entanglement transition is well identified by a combination of the bipartite entanglement entropy and the topological entanglement entropy.
arXiv Detail & Related papers (2021-12-17T22:01:54Z) - Emergent ergodicity at the transition between many-body localized phases [0.0]
We conjecture that no direct transition between distinct MBL orders can occur; rather, a thermal phase always intervenes.
Motivated by recent advances in Rydberg-atom-based quantum simulation, we propose an experimental protocol where the intervening thermal phase can be diagnosed via the dynamics of local observables.
arXiv Detail & Related papers (2020-08-19T18:00:00Z) - Topological Phase Transitions Induced by Varying Topology and Boundaries
in the Toric Code [0.0]
We study the sensitivity of such phases of matter to the underlying topology.
We claim that these phase transitions are accompanied by broken symmetries in the excitation space.
We show that the phase transition between such steady states is effectively captured by the expectation value of the open-loop operator.
arXiv Detail & Related papers (2020-04-07T18:00:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.