UAV Autonomous Localization using Macro-Features Matching with a CAD
Model
- URL: http://arxiv.org/abs/2001.11610v1
- Date: Thu, 30 Jan 2020 23:49:15 GMT
- Title: UAV Autonomous Localization using Macro-Features Matching with a CAD
Model
- Authors: Akkas Haque, Ahmed Elsaharti, Tarek Elderini, Mohamed Atef Elsaharty,
and Jeremiah Neubert
- Abstract summary: This paper presents a novel offline, portable, real-time in-door UAV localization technique that relies on macro-feature detection and matching.
The main contribution of this work is the real-time creation of a macro-feature description vector from the UAV captured images which are simultaneously matched with an offline pre-existing vector from a Computer-Aided Design (CAD) model.
The effectiveness and accuracy of the proposed system were evaluated through simulations and experimental prototype implementation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Research in the field of autonomous Unmanned Aerial Vehicles (UAVs) has
significantly advanced in recent years, mainly due to their relevance in a
large variety of commercial, industrial, and military applications. However,
UAV navigation in GPS-denied environments continues to be a challenging problem
that has been tackled in recent research through sensor-based approaches. This
paper presents a novel offline, portable, real-time in-door UAV localization
technique that relies on macro-feature detection and matching. The proposed
system leverages the support of machine learning, traditional computer vision
techniques, and pre-existing knowledge of the environment. The main
contribution of this work is the real-time creation of a macro-feature
description vector from the UAV captured images which are simultaneously
matched with an offline pre-existing vector from a Computer-Aided Design (CAD)
model. This results in a quick UAV localization within the CAD model. The
effectiveness and accuracy of the proposed system were evaluated through
simulations and experimental prototype implementation. Final results reveal the
algorithm's low computational burden as well as its ease of deployment in
GPS-denied environments.
Related papers
- UAV-Based Human Body Detector Selection and Fusion for Geolocated Saliency Map Generation [0.2499907423888049]
The problem of reliably detecting and geolocating objects of different classes in soft real-time is essential in many application areas, such as Search and Rescue performed using Unmanned Aerial Vehicles (UAVs)
This research addresses the complementary problems of system contextual vision-based detector selection, allocation, and execution.
The detection results are fused using a method for building maps of salient locations which takes advantage of a novel sensor model for vision-based detections for both positive and negative observations.
arXiv Detail & Related papers (2024-08-29T13:00:37Z) - Efficient Real-time Smoke Filtration with 3D LiDAR for Search and Rescue
with Autonomous Heterogeneous Robotic Systems [56.838297900091426]
Smoke and dust affect the performance of any mobile robotic platform due to their reliance on onboard perception systems.
This paper proposes a novel modular computation filtration pipeline based on intensity and spatial information.
arXiv Detail & Related papers (2023-08-14T16:48:57Z) - Real-time Aerial Detection and Reasoning on Embedded-UAVs [3.0839245814393728]
We present a unified pipeline architecture for a real-time detection system on an embedded system for UAVs.
This pipeline of networks can exploit the domain-specific knowledge on aerial pedestrian detection and activity recognition.
arXiv Detail & Related papers (2023-05-21T09:43:17Z) - Deep Learning Computer Vision Algorithms for Real-time UAVs On-board
Camera Image Processing [77.34726150561087]
This paper describes how advanced deep learning based computer vision algorithms are applied to enable real-time on-board sensor processing for small UAVs.
All algorithms have been developed using state-of-the-art image processing methods based on deep neural networks.
arXiv Detail & Related papers (2022-11-02T11:10:42Z) - Advanced Algorithms of Collision Free Navigation and Flocking for
Autonomous UAVs [0.0]
This report contributes towards the state-of-the-art in UAV control for safe autonomous navigation and motion coordination of multi-UAV systems.
The first part of this report deals with single-UAV systems. The complex problem of three-dimensional (3D) collision-free navigation in unknown/dynamic environments is addressed.
The second part of this report addresses safe navigation for multi-UAV systems. Distributed motion coordination methods of multi-UAV systems for flocking and 3D area coverage are developed.
arXiv Detail & Related papers (2021-10-30T03:51:40Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
We propose a novel anomaly detection model called Discriminatory Auto-Encoder (DAE)
It uses the baseline of a regular LSTM-based auto-encoder but with several decoders, each getting data of a specific flight phase.
Results show that the DAE achieves better results in both accuracy and speed of detection.
arXiv Detail & Related papers (2021-09-08T14:07:55Z) - Trajectory Design for UAV-Based Internet-of-Things Data Collection: A
Deep Reinforcement Learning Approach [93.67588414950656]
In this paper, we investigate an unmanned aerial vehicle (UAV)-assisted Internet-of-Things (IoT) system in a 3D environment.
We present a TD3-based trajectory design for completion time minimization (TD3-TDCTM) algorithm.
Our simulation results show the superiority of the proposed TD3-TDCTM algorithm over three conventional non-learning based baseline methods.
arXiv Detail & Related papers (2021-07-23T03:33:29Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
We propose a framework for a team of UAVs to cooperatively explore and find a target in complex GPS-denied environments with obstacles.
The team of UAVs autonomously navigates, explores, detects, and finds the target in a cluttered environment with a known map.
Results indicate that the proposed multi-UAV system has improvements in terms of time-cost, the proportion of search area surveyed, as well as successful rates for search and rescue missions.
arXiv Detail & Related papers (2021-07-19T12:54:04Z) - Cycle and Semantic Consistent Adversarial Domain Adaptation for Reducing
Simulation-to-Real Domain Shift in LiDAR Bird's Eye View [110.83289076967895]
We present a BEV domain adaptation method based on CycleGAN that uses prior semantic classification in order to preserve the information of small objects of interest during the domain adaptation process.
The quality of the generated BEVs has been evaluated using a state-of-the-art 3D object detection framework at KITTI 3D Object Detection Benchmark.
arXiv Detail & Related papers (2021-04-22T12:47:37Z) - Towards Deep Learning Assisted Autonomous UAVs for Manipulation Tasks in
GPS-Denied Environments [10.02675366919811]
This paper is primarily focused on the task of assembling large 3D structures in outdoors and GPS-denied environments.
Our framework is deployed on the specified UAV in order to report the performance analysis of the individual modules.
arXiv Detail & Related papers (2021-01-16T09:20:46Z) - Target Detection, Tracking and Avoidance System for Low-cost UAVs using
AI-Based Approaches [1.5836913530330785]
An onboard target detection, tracking and avoidance system has been developed for low-cost UAV flight controllers using AI-Based approaches.
The proposed system is that an ally UAV can either avoid or track an unexpected enemy UAV with a net to protect itself.
arXiv Detail & Related papers (2020-02-27T21:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.