論文の概要: A memory of motion for visual predictive control tasks
- arxiv url: http://arxiv.org/abs/2001.11759v3
- Date: Thu, 7 May 2020 09:51:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 06:56:54.177824
- Title: A memory of motion for visual predictive control tasks
- Title(参考訳): 視覚的予測制御タスクのための動作記憶
- Authors: Antonio Paolillo, Teguh Santoso Lembono, Sylvain Calinon
- Abstract要約: 本稿では,視覚的予測制御タスクを効率的に行うという課題に対処する。
オフラインで構築された一連の軌道を含む動きの記憶は、プリ計算の活用に使用される。
提案手法により制御方式は高い性能を達成でき、同時に計算時間を制限し続けることができる。
- 参考スコア(独自算出の注目度): 20.4111805579977
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses the problem of efficiently achieving visual predictive
control tasks. To this end, a memory of motion, containing a set of
trajectories built off-line, is used for leveraging precomputation and dealing
with difficult visual tasks. Standard regression techniques, such as k-nearest
neighbors and Gaussian process regression, are used to query the memory and
provide on-line a warm-start and a way point to the control optimization
process. The proposed technique allows the control scheme to achieve high
performance and, at the same time, keep the computational time limited.
Simulation and experimental results, carried out with a 7-axis manipulator,
show the effectiveness of the approach.
- Abstract(参考訳): 本稿では,視覚的予測制御タスクを効率的に行うという課題に対処する。
この目的のために、オフラインで構築された一連の軌道を含む動きの記憶は、事前計算の活用と難しい視覚タスクの処理に使用される。
k-nearest neighborsやgaussian process regressionといった標準的な回帰技術は、メモリを照会し、オンラインにウォームスタートと制御最適化プロセスへの道筋を提供するために使用される。
提案手法により制御方式は高い性能を達成でき、同時に計算時間を制限し続けることができる。
7軸マニピュレータを用いたシミュレーションと実験結果から, 本手法の有効性が示された。
関連論文リスト
- Denoising Pre-Training and Customized Prompt Learning for Efficient Multi-Behavior Sequential Recommendation [69.60321475454843]
マルチビヘイビアシークエンシャルレコメンデーションに適した,最初の事前学習および迅速な学習パラダイムであるDPCPLを提案する。
事前学習段階において,複数の時間スケールでノイズを除去する新しい行動マイナ (EBM) を提案する。
次に,提案するCustomized Prompt Learning (CPL)モジュールを用いて,事前学習したモデルを高効率にチューニングすることを提案する。
論文 参考訳(メタデータ) (2024-08-21T06:48:38Z) - Neural Horizon Model Predictive Control -- Increasing Computational Efficiency with Neural Networks [0.0]
予測制御をモデル化するための機械学習支援手法を提案する。
安全保証を維持しつつ,問題地平線の一部を近似することを提案する。
提案手法は,迅速な制御応答を必要とするアプリケーションを含む,幅広いアプリケーションに適用可能である。
論文 参考訳(メタデータ) (2024-08-19T08:13:37Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - ACE : Off-Policy Actor-Critic with Causality-Aware Entropy Regularization [52.5587113539404]
因果関係を考慮したエントロピー(entropy)という用語を導入し,効率的な探索を行うための潜在的影響の高いアクションを効果的に識別し,優先順位付けする。
提案アルゴリズムであるACE:Off-policy Actor-critic with Causality-aware Entropy regularizationは,29種類の連続制御タスクに対して,大幅な性能上の優位性を示す。
論文 参考訳(メタデータ) (2024-02-22T13:22:06Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Inferring Smooth Control: Monte Carlo Posterior Policy Iteration with
Gaussian Processes [39.411957858548355]
オンラインシーケンシャル推論を用いて,よりスムーズなモデル予測因子制御を実現する方法を示す。
提案手法は,いくつかのロボット制御タスクにおいて,従来の手法と一致し,スムーズさを確保しつつ評価する。
論文 参考訳(メタデータ) (2022-10-07T12:56:31Z) - Meta Learning MPC using Finite-Dimensional Gaussian Process
Approximations [0.9539495585692008]
制御における学習手法の実践的適用性を阻害する2つの重要な要因は、その計算複雑性と、目に見えない条件に対する限定的な一般化能力である。
本稿では,従来のタスクからのデータを活用するシステムモデルを学習することにより,適応型モデル予測制御のためのメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2020-08-13T15:59:38Z) - Goal-Conditioned End-to-End Visuomotor Control for Versatile Skill
Primitives [89.34229413345541]
本稿では,制御器とその条件をエンドツーエンドに学習することで,落とし穴を回避する条件付け手法を提案する。
本モデルでは,ロボットの動きのダイナミックな画像表現に基づいて,複雑な動作シーケンスを予測する。
代表的MPCおよびILベースラインに対するタスク成功の大幅な改善を報告した。
論文 参考訳(メタデータ) (2020-03-19T15:04:37Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z) - Experimental adaptive Bayesian estimation of multiple phases with
limited data [0.0]
追加の制御パラメータを利用するアダプティブプロトコルは、量子センサの性能を最適化して、そのような制限されたデータ構造で動作するためのツールを提供する。
推定プロセス中に制御パラメータをチューニングするための最適な戦略を見つけることは自明な問題であり、機械学習技術はそのような課題に対処するための自然な解決策である。
フェムト秒レーザーによる小型でフレキシブルな集積フォトニック回路を用いて、高い制御率で異なる戦略を実現できる。
論文 参考訳(メタデータ) (2020-02-04T11:32:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。