AdvectiveNet: An Eulerian-Lagrangian Fluidic reservoir for Point Cloud
Processing
- URL: http://arxiv.org/abs/2002.00118v3
- Date: Wed, 24 Jun 2020 19:44:09 GMT
- Title: AdvectiveNet: An Eulerian-Lagrangian Fluidic reservoir for Point Cloud
Processing
- Authors: Xingzhe He, Helen Lu Cao, Bo Zhu
- Abstract summary: This paper presents a physics-inspired deep learning approach for point cloud processing motivated by the natural flow phenomena in fluid mechanics.
Our learning architecture jointly defines data in an Eulerian world space, using a static background grid, and a Lagrangian material space, using moving particles.
We demonstrate the efficacy of this system by solving various point cloud classification and segmentation problems with state-of-the-art performance.
- Score: 14.160687527074858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel physics-inspired deep learning approach for point
cloud processing motivated by the natural flow phenomena in fluid mechanics.
Our learning architecture jointly defines data in an Eulerian world space,
using a static background grid, and a Lagrangian material space, using moving
particles. By introducing this Eulerian-Lagrangian representation, we are able
to naturally evolve and accumulate particle features using flow velocities
generated from a generalized, high-dimensional force field. We demonstrate the
efficacy of this system by solving various point cloud classification and
segmentation problems with state-of-the-art performance. The entire geometric
reservoir and data flow mimics the pipeline of the classic PIC/FLIP scheme in
modeling natural flow, bridging the disciplines of geometric machine learning
and physical simulation.
Related papers
- Vision-Informed Flow Image Super-Resolution with Quaternion Spatial
Modeling and Dynamic Flow Convolution [49.45309818782329]
Flow image super-resolution (FISR) aims at recovering high-resolution turbulent velocity fields from low-resolution flow images.
Existing FISR methods mainly process the flow images in natural image patterns.
We propose the first flow visual property-informed FISR algorithm.
arXiv Detail & Related papers (2024-01-29T06:48:16Z) - PAC-NeRF: Physics Augmented Continuum Neural Radiance Fields for
Geometry-Agnostic System Identification [64.61198351207752]
Existing approaches to system identification (estimating the physical parameters of an object) from videos assume known object geometries.
In this work, we aim to identify parameters characterizing a physical system from a set of multi-view videos without any assumption on object geometry or topology.
We propose "Physics Augmented Continuum Neural Radiance Fields" (PAC-NeRF), to estimate both the unknown geometry and physical parameters of highly dynamic objects from multi-view videos.
arXiv Detail & Related papers (2023-03-09T18:59:50Z) - Learning Vortex Dynamics for Fluid Inference and Prediction [25.969713036393895]
We propose a novel machine learning method based on differentiable vortex particles to infer and predict fluid dynamics from a single video.
We devise a novel differentiable vortex particle system in conjunction with their learnable, vortex-to-velocity dynamics mapping to effectively capture and represent the complex flow features in a reduced space.
arXiv Detail & Related papers (2023-01-27T02:10:05Z) - Physics Informed Neural Fields for Smoke Reconstruction with Sparse Data [73.8970871148949]
High-fidelity reconstruction of fluids from sparse multiview RGB videos remains a formidable challenge.
Existing solutions either assume knowledge of obstacles and lighting, or only focus on simple fluid scenes without obstacles or complex lighting.
We present the first method to reconstruct dynamic fluid by leveraging the governing physics (ie, Navier -Stokes equations) in an end-to-end optimization.
arXiv Detail & Related papers (2022-06-14T03:38:08Z) - NeuroFluid: Fluid Dynamics Grounding with Particle-Driven Neural
Radiance Fields [65.07940731309856]
Deep learning has shown great potential for modeling the physical dynamics of complex particle systems such as fluids.
In this paper, we consider a partially observable scenario known as fluid dynamics grounding.
We propose a differentiable two-stage network named NeuroFluid.
It is shown to reasonably estimate the underlying physics of fluids with different initial shapes, viscosity, and densities.
arXiv Detail & Related papers (2022-03-03T15:13:29Z) - Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent
Resolution of Particle-Based Liquids [0.6882042556551611]
We present a novel up-resing technique for generating high-resolution liquids based on scene flow estimation using deep neural networks.
Our approach infers and synthesizes small- and large-scale details solely from a low-resolution particle-based liquid simulation.
arXiv Detail & Related papers (2021-06-09T15:36:23Z) - Learning 3D Granular Flow Simulations [6.308272531414633]
We present a Graph Neural Networks approach towards accurate modeling of complex 3D granular flow simulation processes created by the discrete element method LIGGGHTS.
We discuss how to implement Graph Neural Networks that deal with 3D objects, boundary conditions, particle - particle, and particle - boundary interactions.
arXiv Detail & Related papers (2021-05-04T17:27:59Z) - Fast Gravitational Approach for Rigid Point Set Registration with
Ordinary Differential Equations [79.71184760864507]
This article introduces a new physics-based method for rigid point set alignment called Fast Gravitational Approach (FGA)
In FGA, the source and target point sets are interpreted as rigid particle swarms with masses interacting in a globally multiply-linked manner while moving in a simulated gravitational force field.
We show that the new method class has characteristics not found in previous alignment methods.
arXiv Detail & Related papers (2020-09-28T15:05:39Z) - Neural Vortex Method: from Finite Lagrangian Particles to Infinite
Dimensional Eulerian Dynamics [16.563723810812807]
We propose a novel learning-based framework, the Neural Vortex Method (NVM)
NVM builds a neural-network description of the Lagrangian vortex structures and their interaction dynamics.
By embedding these two networks with a vorticity-to-velocity Poisson solver, we can predict the accurate fluid dynamics.
arXiv Detail & Related papers (2020-06-07T15:12:25Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.