Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent
Resolution of Particle-Based Liquids
- URL: http://arxiv.org/abs/2106.05143v1
- Date: Wed, 9 Jun 2021 15:36:23 GMT
- Title: Neural UpFlow: A Scene Flow Learning Approach to Increase the Apparent
Resolution of Particle-Based Liquids
- Authors: Bruno Roy, Pierre Poulin, and Eric Paquette
- Abstract summary: We present a novel up-resing technique for generating high-resolution liquids based on scene flow estimation using deep neural networks.
Our approach infers and synthesizes small- and large-scale details solely from a low-resolution particle-based liquid simulation.
- Score: 0.6882042556551611
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We present a novel up-resing technique for generating high-resolution liquids
based on scene flow estimation using deep neural networks. Our approach infers
and synthesizes small- and large-scale details solely from a low-resolution
particle-based liquid simulation. The proposed network leverages neighborhood
contributions to encode inherent liquid properties throughout convolutions. We
also propose a particle-based approach to interpolate between liquids generated
from varying simulation discretizations using a state-of-the-art bidirectional
optical flow solver method for fluids in addition to a novel key-event
topological alignment constraint. In conjunction with the neighborhood
contributions, our loss formulation allows the inference model throughout
epochs to reward important differences in regard to significant gaps in
simulation discretizations. Even when applied in an untested simulation setup,
our approach is able to generate plausible high-resolution details. Using this
interpolation approach and the predicted displacements, our approach combines
the input liquid properties with the predicted motion to infer semi-Lagrangian
advection. We furthermore showcase how the proposed interpolation approach can
facilitate generating large simulation datasets with a subset of initial
condition parameters.
Related papers
- Conditional Lagrangian Wasserstein Flow for Time Series Imputation [3.914746375834628]
We propose a novel method for time series imputation called Conditional Lagrangian Wasserstein Flow.
The proposed method leverages the (conditional) optimal transport theory to learn the probability flow in a simulation-free manner.
The experimental results on the real-word datasets show that the proposed method achieves competitive performance on time series imputation.
arXiv Detail & Related papers (2024-10-10T02:46:28Z) - Dynamical Measure Transport and Neural PDE Solvers for Sampling [77.38204731939273]
We tackle the task of sampling from a probability density as transporting a tractable density function to the target.
We employ physics-informed neural networks (PINNs) to approximate the respective partial differential equations (PDEs) solutions.
PINNs allow for simulation- and discretization-free optimization and can be trained very efficiently.
arXiv Detail & Related papers (2024-07-10T17:39:50Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
We introduce a Motion-Aware Video Frame Interpolation (MA-VFI) network, which directly estimates intermediate optical flow from consecutive frames.
It not only extracts global semantic relationships and spatial details from input frames with different receptive fields, but also effectively reduces the required computational cost and complexity.
arXiv Detail & Related papers (2024-02-05T11:00:14Z) - Fluid Simulation on Neural Flow Maps [23.5602305386658]
We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps.
We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences.
arXiv Detail & Related papers (2023-12-22T12:13:19Z) - Identifying topology of leaky photonic lattices with machine learning [0.0]
We show how machine learning techniques can be applied for the classification of topological phases in leaky photonic lattices.
We propose an approach based solely on bulk intensity measurements, thus exempt from the need for complicated phase retrieval procedures.
arXiv Detail & Related papers (2023-08-28T08:42:06Z) - A DeepParticle method for learning and generating aggregation patterns
in multi-dimensional Keller-Segel chemotaxis systems [3.6184545598911724]
We study a regularized interacting particle method for computing aggregation patterns and near singular solutions of a Keller-Segal (KS) chemotaxis system in two and three space dimensions.
We further develop DeepParticle (DP) method to learn and generate solutions under variations of physical parameters.
arXiv Detail & Related papers (2022-08-31T20:52:01Z) - Machine Learning model for gas-liquid interface reconstruction in CFD
numerical simulations [59.84561168501493]
The volume of fluid (VoF) method is widely used in multi-phase flow simulations to track and locate the interface between two immiscible fluids.
A major bottleneck of the VoF method is the interface reconstruction step due to its high computational cost and low accuracy on unstructured grids.
We propose a machine learning enhanced VoF method based on Graph Neural Networks (GNN) to accelerate the interface reconstruction on general unstructured meshes.
arXiv Detail & Related papers (2022-07-12T17:07:46Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
We propose a novel end-to-end learning-based framework to generate dense point clouds.
We first formulate the problem explicitly, which boils down to determining the weights and high-order approximation errors.
Then, we design a lightweight neural network to adaptively learn unified and sorted weights as well as the high-order refinements.
arXiv Detail & Related papers (2020-11-25T14:00:18Z) - Neural Vortex Method: from Finite Lagrangian Particles to Infinite
Dimensional Eulerian Dynamics [16.563723810812807]
We propose a novel learning-based framework, the Neural Vortex Method (NVM)
NVM builds a neural-network description of the Lagrangian vortex structures and their interaction dynamics.
By embedding these two networks with a vorticity-to-velocity Poisson solver, we can predict the accurate fluid dynamics.
arXiv Detail & Related papers (2020-06-07T15:12:25Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
We propose a novel numerical scheme to optimize the gradient flows for learning energy-based models (EBMs)
We derive a second-order Wasserstein gradient flow of the global relative entropy from Fokker-Planck equation.
Compared with existing schemes, Wasserstein gradient flow is a smoother and near-optimal numerical scheme to approximate real data densities.
arXiv Detail & Related papers (2019-10-31T02:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.