論文の概要: Leveraging Uncertainties for Deep Multi-modal Object Detection in
Autonomous Driving
- arxiv url: http://arxiv.org/abs/2002.00216v1
- Date: Sat, 1 Feb 2020 14:24:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-05 01:13:14.627801
- Title: Leveraging Uncertainties for Deep Multi-modal Object Detection in
Autonomous Driving
- Title(参考訳): 自動運転におけるディープマルチモーダル物体検出の不確かさの活用
- Authors: Di Feng, Yifan Cao, Lars Rosenbaum, Fabian Timm, Klaus Dietmayer
- Abstract要約: この研究は、LiDAR点雲とRGBカメラ画像を組み合わせて、堅牢で正確な3Dオブジェクト検出を行う確率論的ディープニューラルネットワークを提案する。
分類および回帰作業における不確実性を明示的にモデル化し、不確実性を活用してサンプリング機構を用いて核融合ネットワークを訓練する。
- 参考スコア(独自算出の注目度): 12.310862288230075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work presents a probabilistic deep neural network that combines LiDAR
point clouds and RGB camera images for robust, accurate 3D object detection. We
explicitly model uncertainties in the classification and regression tasks, and
leverage uncertainties to train the fusion network via a sampling mechanism. We
validate our method on three datasets with challenging real-world driving
scenarios. Experimental results show that the predicted uncertainties reflect
complex environmental uncertainty like difficulties of a human expert to label
objects. The results also show that our method consistently improves the
Average Precision by up to 7% compared to the baseline method. When sensors are
temporally misaligned, the sampling method improves the Average Precision by up
to 20%, showing its high robustness against noisy sensor inputs.
- Abstract(参考訳): この研究は、LiDAR点雲とRGBカメラ画像を組み合わせて、堅牢で正確な3Dオブジェクト検出を行う確率論的ディープニューラルネットワークを提案する。
分類および回帰作業における不確実性を明示的にモデル化し、不確実性を利用してサンプリング機構を介して核融合ネットワークを訓練する。
本手法を3つのデータセット上で検証し,実世界の運転シナリオに挑戦した。
実験結果から、予測された不確実性は、人間の専門家によるラベル付けの難しさのような複雑な環境不確実性を反映していることが示された。
また,本手法はベースライン法と比較して平均精度を最大7%向上させることを示した。
センサが時間的にずれている場合、サンプリング方法は平均精度を最大20%改善し、ノイズの多いセンサ入力に対して高い堅牢性を示す。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - Mutual Information-calibrated Conformal Feature Fusion for
Uncertainty-Aware Multimodal 3D Object Detection at the Edge [1.7898305876314982]
3次元(3D)物体検出は、重要なロボティクスの操作であり、大きな進歩を遂げている。
本研究は,共形推論の原理と情報理論測度を統合し,モンテカルロ自由な不確実性推定を行う。
このフレームワークは、KITTIの3Dオブジェクト検出ベンチマークにおいて、不確実性に気付かない類似のメソッドと同等またはより良いパフォーマンスを示す。
論文 参考訳(メタデータ) (2023-09-18T09:02:44Z) - Uncertainty-Aware AB3DMOT by Variational 3D Object Detection [74.8441634948334]
不確実性推定は統計的に正確な予測を提供する効果的なツールである。
本稿では,変分ニューラルネットワークを用いたTANet 3Dオブジェクト検出器を提案し,不確実性のある3Dオブジェクト検出を行う。
論文 参考訳(メタデータ) (2023-02-12T14:30:03Z) - Resolving Class Imbalance for LiDAR-based Object Detector by Dynamic
Weight Average and Contextual Ground Truth Sampling [7.096611243139798]
実世界の運転データセットは、しばしばデータ不均衡の問題に悩まされる。
このデータ不均衡問題に対処する手法を提案する。
KITTIおよびnuScenesデータセットを用いた実験により,提案手法の有効性が確認された。
論文 参考訳(メタデータ) (2022-10-07T05:23:25Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - Active Learning of Neural Collision Handler for Complex 3D Mesh
Deformations [68.0524382279567]
3次元変形メッシュにおける衝突の検出と処理を行う頑健な学習アルゴリズムを提案する。
提案手法は教師あり学習法より優れ, 精度は93.8-98.1%である。
論文 参考訳(メタデータ) (2021-10-08T04:08:31Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Labels Are Not Perfect: Improving Probabilistic Object Detection via
Label Uncertainty [12.531126969367774]
これまでに提案した手法を用いて,真理境界ボックスパラメータに固有の不確かさを推定する。
KITTIデータセットを用いた実験結果から,本手法はベースラインモデルとモデルの両方を,平均精度で最大3.6%の精度で上回ることがわかった。
論文 参考訳(メタデータ) (2020-08-10T14:49:49Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。