論文の概要: Uncertainty Estimation Using a Single Deep Deterministic Neural Network
- arxiv url: http://arxiv.org/abs/2003.02037v2
- Date: Mon, 29 Jun 2020 16:04:35 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-26 12:23:57.135506
- Title: Uncertainty Estimation Using a Single Deep Deterministic Neural Network
- Title(参考訳): 単一深部決定性ニューラルネットワークによる不確かさ推定
- Authors: Joost van Amersfoort, Lewis Smith, Yee Whye Teh, Yarin Gal
- Abstract要約: 本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
- 参考スコア(独自算出の注目度): 66.26231423824089
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a method for training a deterministic deep model that can find and
reject out of distribution data points at test time with a single forward pass.
Our approach, deterministic uncertainty quantification (DUQ), builds upon ideas
of RBF networks. We scale training in these with a novel loss function and
centroid updating scheme and match the accuracy of softmax models. By enforcing
detectability of changes in the input using a gradient penalty, we are able to
reliably detect out of distribution data. Our uncertainty quantification scales
well to large datasets, and using a single model, we improve upon or match Deep
Ensembles in out of distribution detection on notable difficult dataset pairs
such as FashionMNIST vs. MNIST, and CIFAR-10 vs. SVHN.
- Abstract(参考訳): 本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的深層モデルのトレーニング手法を提案する。
我々のアプローチである決定論的不確実性定量化(DUQ)はRBFネットワークの考え方に基づいている。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
勾配ペナルティを用いて入力の変化の検出性を強制することにより、分布データを確実に検出することができる。
我々の不確実性定量化は大規模なデータセットによく当てはまり、単一モデルを使用することで、FashionMNIST vs. MNIST、CIFAR-10 vs. SVHNのような顕著な難しいデータセット対に対して、分布検出からDeep Ensemblesを改善または適合させる。
関連論文リスト
- How to Combine Variational Bayesian Networks in Federated Learning [0.0]
フェデレートラーニングにより、複数のデータセンターが機密データを公開することなく、協力的に中央モデルをトレーニングできる。
決定論的モデルは高い予測精度を達成することができ、キャリブレーションの欠如と不確実性を定量化する能力は、安全クリティカルなアプリケーションには問題となる。
変分ベイズニューラルネットワークに対する様々なアグリゲーションスキームの効果について検討する。
論文 参考訳(メタデータ) (2022-06-22T07:53:12Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Bayesian Imaging With Data-Driven Priors Encoded by Neural Networks:
Theory, Methods, and Algorithms [2.266704469122763]
本稿では,事前知識がトレーニングデータとして利用可能である逆問題に対して,ベイズ推定を行う新しい手法を提案する。
容易に検証可能な条件下で,関連する後方モーメントの存在と適切性を確立する。
モデル精度解析により、データ駆動モデルによって報告されるベイズ確率は、頻繁な定義の下で著しく正確であることが示された。
論文 参考訳(メタデータ) (2021-03-18T11:34:08Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
既存のディープニューラルネットワークに基づくサルエントオブジェクト検出(SOD)手法は主に高いネットワーク精度の追求に重点を置いている。
これらの手法は、信頼不均衡問題として知られるネットワーク精度と予測信頼の間のギャップを見落としている。
我々は,不確実性を考慮した深部SODネットワークを導入し,深部SODネットワークの過信を防止するための2つの戦略を提案する。
論文 参考訳(メタデータ) (2020-12-10T23:28:36Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
識別型分類器における確率のパラメトリゼーションが不確実性推定に与える影響について検討する。
画像分類タスクのキャリブレーションを改善するために, 1-vs-all の定式化が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-10T01:55:02Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Fine-grained Uncertainty Modeling in Neural Networks [0.0]
本稿では,ニューラルネットワークにおける分布外点検出のための新しい手法を提案する。
我々の手法は、NNの過度な判断を正し、外れ点を検知し、上位2つの予測の間で重要な点が不確実であるときに「私は知らない」と言うことを学習する。
副作用として, 本手法は, 追加訓練を必要とせず, 敵の攻撃を防ぐのに有効である。
論文 参考訳(メタデータ) (2020-02-11T05:06:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。