Uncertainty Weighted Causal Graphs
- URL: http://arxiv.org/abs/2002.00429v2
- Date: Thu, 6 Feb 2020 13:39:26 GMT
- Title: Uncertainty Weighted Causal Graphs
- Authors: Eduardo C. Garrido-Merch\'an, C. Puente, A. Sobrino, J.A. Olivas
- Abstract summary: Causality has traditionally been a scientific way to generate knowledge by relating causes to effects.
We will attempt to go a step further modelling the uncertainty in the graph through probabilistic improving the management of the imprecision in the quoted graph.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causality has traditionally been a scientific way to generate knowledge by
relating causes to effects. From an imaginery point of view, causal graphs are
a helpful tool for representing and infering new causal information. In
previous works, we have generated automatically causal graphs associated to a
given concept by analyzing sets of documents and extracting and representing
the found causal information in that visual way. The retrieved information
shows that causality is frequently imperfect rather than exact, feature
gathered by the graph. In this work we will attempt to go a step further
modelling the uncertainty in the graph through probabilistic improving the
management of the imprecision in the quoted graph.
Related papers
- Parametric Graph Representations in the Era of Foundation Models: A Survey and Position [69.48708136448694]
Graphs have been widely used in the past decades of big data and AI to model comprehensive relational data.
Identifying meaningful graph laws can significantly enhance the effectiveness of various applications.
arXiv Detail & Related papers (2024-10-16T00:01:31Z) - Causal Discovery in Recommender Systems: Example and Discussion [3.013819656993265]
Causality is receiving increasing attention by the artificial intelligence and machine learning communities.
This paper gives an example of modelling a recommender system problem using causal graphs.
arXiv Detail & Related papers (2024-09-16T13:31:04Z) - CEGRL-TKGR: A Causal Enhanced Graph Representation Learning Framework for Improving Temporal Knowledge Graph Extrapolation Reasoning [1.6795461001108096]
We propose an innovative causal enhanced graph representation learning framework for temporal knowledge graph reasoning (TKGR)
We first disentangle the evolutionary representations of entities and relations in a temporal graph sequence into two distinct components, namely causal representations and confounding representations.
arXiv Detail & Related papers (2024-08-15T03:34:53Z) - Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
We propose a novel approach, Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR) for graph-level anomaly detection.
The model combines the motif of one graph, the core subgraph containing the identification (category) information, and the contextual subgraph of another graph to produce a raw counterfactual graph.
MotifCAR can generate high-quality counterfactual graphs.
arXiv Detail & Related papers (2024-07-18T08:04:57Z) - Towards Self-Interpretable Graph-Level Anomaly Detection [73.1152604947837]
Graph-level anomaly detection (GLAD) aims to identify graphs that exhibit notable dissimilarity compared to the majority in a collection.
We propose a Self-Interpretable Graph aNomaly dETection model ( SIGNET) that detects anomalous graphs as well as generates informative explanations simultaneously.
arXiv Detail & Related papers (2023-10-25T10:10:07Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
We present a new generative and structured commonsense-reasoning task (and an associated dataset) of explanation graph generation for stance prediction.
Specifically, given a belief and an argument, a model has to predict whether the argument supports or counters the belief and also generate a commonsense-augmented graph that serves as non-trivial, complete, and unambiguous explanation for the predicted stance.
A significant 83% of our graphs contain external commonsense nodes with diverse structures and reasoning depths.
arXiv Detail & Related papers (2021-04-15T17:51:36Z) - Out-of-Sample Representation Learning for Multi-Relational Graphs [8.956321788625894]
We study the out-of-sample representation learning problem for non-attributed knowledge graphs.
We create benchmark datasets for this task, develop several models and baselines, and provide empirical analyses and comparisons of the proposed models and baselines.
arXiv Detail & Related papers (2020-04-28T00:53:01Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
We investigate and summarize the existing works on graph adversarial learning tasks.
Specifically, we survey and unify the existing works w.r.t. attack and defense in graph analysis tasks.
We emphasize the importance of related evaluation metrics, investigate and summarize them comprehensively.
arXiv Detail & Related papers (2020-03-10T12:48:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.