Deep Reinforcement Learning for Autonomous Driving: A Survey
- URL: http://arxiv.org/abs/2002.00444v2
- Date: Sat, 23 Jan 2021 17:02:01 GMT
- Title: Deep Reinforcement Learning for Autonomous Driving: A Survey
- Authors: B Ravi Kiran, Ibrahim Sobh, Victor Talpaert, Patrick Mannion, Ahmad A.
Al Sallab, Senthil Yogamani, Patrick P\'erez
- Abstract summary: This review summarises deep reinforcement learning (DRL) algorithms and provides a taxonomy of automated driving tasks.
It also delineates adjacent domains such as behavior cloning, imitation learning, inverse reinforcement learning that are related but are not classical RL algorithms.
The role of simulators in training agents, methods to validate, test and robustify existing solutions in RL are discussed.
- Score: 0.3694429692322631
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the development of deep representation learning, the domain of
reinforcement learning (RL) has become a powerful learning framework now
capable of learning complex policies in high dimensional environments. This
review summarises deep reinforcement learning (DRL) algorithms and provides a
taxonomy of automated driving tasks where (D)RL methods have been employed,
while addressing key computational challenges in real world deployment of
autonomous driving agents. It also delineates adjacent domains such as behavior
cloning, imitation learning, inverse reinforcement learning that are related
but are not classical RL algorithms. The role of simulators in training agents,
methods to validate, test and robustify existing solutions in RL are discussed.
Related papers
- RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - End-to-end Lidar-Driven Reinforcement Learning for Autonomous Racing [0.0]
Reinforcement Learning (RL) has emerged as a transformative approach in the domains of automation and robotics.
This study develops and trains an RL agent to navigate a racing environment solely using feedforward raw lidar and velocity data.
The agent's performance is then experimentally evaluated in a real-world racing scenario.
arXiv Detail & Related papers (2023-09-01T07:03:05Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Autonomous Reinforcement Learning: Formalism and Benchmarking [106.25788536376007]
Real-world embodied learning, such as that performed by humans and animals, is situated in a continual, non-episodic world.
Common benchmark tasks in RL are episodic, with the environment resetting between trials to provide the agent with multiple attempts.
This discrepancy presents a major challenge when attempting to take RL algorithms developed for episodic simulated environments and run them on real-world platforms.
arXiv Detail & Related papers (2021-12-17T16:28:06Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - DriverGym: Democratising Reinforcement Learning for Autonomous Driving [75.91049219123899]
We propose DriverGym, an open-source environment for developing reinforcement learning algorithms for autonomous driving.
DriverGym provides access to more than 1000 hours of expert logged data and also supports reactive and data-driven agent behavior.
The performance of an RL policy can be easily validated on real-world data using our extensive and flexible closed-loop evaluation protocol.
arXiv Detail & Related papers (2021-11-12T11:47:08Z) - Hierarchical Program-Triggered Reinforcement Learning Agents For
Automated Driving [5.404179497338455]
Recent advances in Reinforcement Learning (RL) combined with Deep Learning (DL) have demonstrated impressive performance in complex tasks, including autonomous driving.
We propose HPRL - Hierarchical Program-triggered Reinforcement Learning, which uses a hierarchy consisting of a structured program along with multiple RL agents, each trained to perform a relatively simple task.
The focus of verification shifts to the master program under simple guarantees from the RL agents, leading to a significantly more interpretable and verifiable implementation as compared to a complex RL agent.
arXiv Detail & Related papers (2021-03-25T14:19:54Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
In real-world tasks, reinforcement learning agents encounter situations that are not present during training time.
To ensure reliable performance, the RL agents need to exhibit robustness against worst-case situations.
We propose the Robust Hallucinated Upper-Confidence RL (RH-UCRL) algorithm to provably solve this problem.
arXiv Detail & Related papers (2021-03-18T16:50:17Z) - A Comparative Analysis of Deep Reinforcement Learning-enabled Freeway
Decision-making for Automated Vehicles [2.394554182452767]
Deep reinforcement learning (DRL) has emerged as a potent methodology for addressing artificial intelligence challenges.
This article compares several DRL approaches for decision-making challenges encountered by autono-mous vehicles on freeways.
A series of simulation experiments are conducted to assess the control performance of these DRL-enabled decision-making strategies.
arXiv Detail & Related papers (2020-08-04T03:21:34Z) - A Survey of Reinforcement Learning Algorithms for Dynamically Varying
Environments [1.713291434132985]
Reinforcement learning (RL) algorithms find applications in inventory control, recommender systems, vehicular traffic management, cloud computing and robotics.
Real-world complications of many tasks arising in these domains makes them difficult to solve with the basic assumptions underlying classical RL algorithms.
This paper provides a survey of RL methods developed for handling dynamically varying environment models.
A representative collection of these algorithms is discussed in detail in this work along with their categorization and their relative merits and demerits.
arXiv Detail & Related papers (2020-05-19T09:42:42Z) - Self-Paced Deep Reinforcement Learning [42.467323141301826]
Curriculum reinforcement learning (CRL) improves the learning speed and stability of an agent by exposing it to a tailored series of tasks throughout learning.
Despite empirical successes, an open question in CRL is how to automatically generate a curriculum for a given reinforcement learning (RL) agent, avoiding manual design.
We propose an answer by interpreting the curriculum generation as an inference problem, where distributions over tasks are progressively learned to approach the target task.
This approach leads to an automatic curriculum generation, whose pace is controlled by the agent, with solid theoretical motivation and easily integrated with deep RL algorithms.
arXiv Detail & Related papers (2020-04-24T15:48:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.