論文の概要: Facial Affect Recognition in the Wild Using Multi-Task Learning
Convolutional Network
- arxiv url: http://arxiv.org/abs/2002.00606v1
- Date: Mon, 3 Feb 2020 09:02:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 08:20:02.122599
- Title: Facial Affect Recognition in the Wild Using Multi-Task Learning
Convolutional Network
- Title(参考訳): マルチタスク学習畳み込みネットワークを用いた野生における顔の認識
- Authors: Zihang Zhang, Jianping Gu
- Abstract要約: 本稿では,FG 2020における影響行動分析にニューラルネットワークを用いた手法を提案する。
マルチタスク学習を利用することで、このネットワークは3つの定量的感情モデルの推定と認識を行うことができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a neural network based method Multi-Task Affect
Net(MTANet) submitted to the Affective Behavior Analysis in-the-Wild Challenge
in FG2020. This method is a multi-task network and based on SE-ResNet modules.
By utilizing multi-task learning, this network can estimate and recognize three
quantified affective models: valence and arousal, action units, and seven basic
emotions simultaneously. MTANet achieve Concordance Correlation
Coefficient(CCC) rates of 0.28 and 0.34 for valence and arousal, F1-score of
0.427 and 0.32 for AUs detection and categorical emotion classification.
- Abstract(参考訳): 本稿では,FG2020における影響行動分析に提案するニューラルネットワークに基づくマルチタスク効果ネット(MTANet)を提案する。
この方法はマルチタスクネットワークであり、SE-ResNetモジュールに基づいている。
マルチタスク学習を利用することで、原子価と覚醒、アクションユニット、および7つの基本的な感情の3つの定量的感情モデルの推定と認識が可能となる。
MTANetは、価値と覚醒値に対して0.28と0.34の一致相関係数(CCC)、AUの検出とカテゴリー感情分類のために0.427と0.32のF1スコアを達成する。
関連論文リスト
- HSEmotion Team at the 7th ABAW Challenge: Multi-Task Learning and Compound Facial Expression Recognition [16.860963320038902]
HSEmotionチームは,第7回ABAW(Affective Behavior Analysis in-the-wild)コンペティションの2つの課題について報告する。
マルチタスク設定で事前学習したフレームレベルの顔特徴抽出器に基づく効率的なパイプラインを提案する。
ニューラルネットワークの軽量アーキテクチャを利用することで、私たちのテクニックのプライバシ意識を確保する。
論文 参考訳(メタデータ) (2024-07-18T05:47:49Z) - HSEmotion Team at the 6th ABAW Competition: Facial Expressions, Valence-Arousal and Emotion Intensity Prediction [16.860963320038902]
我々は、下流タスクのためにニューラルネットワークを微調整することなく、信頼できる感情的特徴を抽出する訓練済みのディープモデルを使用することの可能性を検討する。
我々は、マルチタスクシナリオで訓練されたMobileViT、MobileFaceNet、EfficientNet、DFNDAMアーキテクチャに基づいて、表情を認識するための軽量モデルをいくつか導入する。
提案手法では,既存の非アンサンブル手法と比較して,検証セットの品質指標を大幅に改善する。
論文 参考訳(メタデータ) (2024-03-18T09:08:41Z) - Provable Guarantees for Nonlinear Feature Learning in Three-Layer Neural
Networks [49.808194368781095]
3層ニューラルネットワークは,2層ネットワークよりも特徴学習能力が豊富であることを示す。
この研究は、特徴学習体制における2層ネットワーク上の3層ニューラルネットワークの証明可能なメリットを理解するための前進である。
論文 参考訳(メタデータ) (2023-05-11T17:19:30Z) - Learning Diversified Feature Representations for Facial Expression
Recognition in the Wild [97.14064057840089]
本稿では,CNN層が抽出した顔表情認識アーキテクチャの特徴を多様化する機構を提案する。
AffectNet,FER+,RAF-DBの3つの顔表情認識実験の結果,本手法の有効性が示された。
論文 参考訳(メタデータ) (2022-10-17T19:25:28Z) - HSE-NN Team at the 4th ABAW Competition: Multi-task Emotion Recognition
and Learning from Synthetic Images [7.056222499095849]
第4回ABAW(Affective Behavior Analysis in the-wild)コンペティションにおけるHSE-NNチームの結果を報告する。
表情の同時認識のために,新しいマルチタスク効率ネットモデルを訓練する。
その結果、MT-EmotiEffNetは単純なフィードフォワードニューラルネットワークに入力される視覚的特徴を抽出する。
論文 参考訳(メタデータ) (2022-07-19T18:43:14Z) - Exploiting Emotional Dependencies with Graph Convolutional Networks for
Facial Expression Recognition [31.40575057347465]
本稿では,視覚における表情認識のためのマルチタスク学習フレームワークを提案する。
MTL設定において、離散認識と連続認識の両方のために共有特徴表現が学習される。
実験の結果,本手法は離散FER上での最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2021-06-07T10:20:05Z) - The FaceChannel: A Fast & Furious Deep Neural Network for Facial
Expression Recognition [71.24825724518847]
顔の表情の自動認識(FER)の最先端モデルは、非常に深いニューラルネットワークに基づいており、訓練には効果的だがかなり高価である。
私たちは、一般的なディープニューラルネットワークよりもはるかに少ないパラメータを持つ軽量ニューラルネットワークであるFaceChannelを形式化します。
我々は、私たちのモデルがFERの現在の最先端技術に匹敵するパフォーマンスを達成する方法を実証する。
論文 参考訳(メタデータ) (2020-09-15T09:25:37Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Deep Multi-task Multi-label CNN for Effective Facial Attribute
Classification [53.58763562421771]
DMM-CNN(ディープ・マルチタスク・マルチラベル・CNN)による効果的な顔属性分類(FAC)を提案する。
具体的には、DMM-CNNは、2つの密接に関連するタスク(顔のランドマーク検出とFAC)を共同で最適化し、マルチタスク学習を活用することにより、FACの性能を向上させる。
2つの異なるネットワークアーキテクチャは2つの属性のグループの特徴を抽出するために設計され、トレーニング中に各顔属性に損失重みを自動的に割り当てる新しい動的重み付け方式が提案されている。
論文 参考訳(メタデータ) (2020-02-10T12:34:16Z) - $M^3$T: Multi-Modal Continuous Valence-Arousal Estimation in the Wild [86.40973759048957]
本報告では、ABAW(Affective Behavior Analysis in-the-wild)チャレンジの価-覚醒的評価トラックへの提案に基づくマルチモーダルマルチタスク(M3$T)アプローチについて述べる。
提案したM3$Tフレームワークでは,ビデオの視覚的特徴とオーディオトラックの音響的特徴の両方を融合させて,有声度と覚醒度を推定する。
ABAW が提供する検証セットに対して,M3$T フレームワークを評価し,ベースライン法を著しく上回る性能を示した。
論文 参考訳(メタデータ) (2020-02-07T18:53:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。