論文の概要: A Novel Incremental Cross-Modal Hashing Approach
- arxiv url: http://arxiv.org/abs/2002.00677v1
- Date: Mon, 3 Feb 2020 12:34:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 09:06:29.847672
- Title: A Novel Incremental Cross-Modal Hashing Approach
- Title(参考訳): 新しい増分的クロスモーダルハッシュ法
- Authors: Devraj Mandal, Soma Biswas
- Abstract要約: 我々は「iCMH」と呼ばれる新しい漸進的クロスモーダルハッシュアルゴリズムを提案する。
提案手法は,ハッシュコードを学習し,ハッシュ関数を訓練する2つの段階からなる。
さまざまなクロスモーダルデータセットの実験と最先端のクロスモーダルアルゴリズムとの比較は、我々のアプローチの有用性を示している。
- 参考スコア(独自算出の注目度): 21.99741793652628
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Cross-modal retrieval deals with retrieving relevant items from one modality,
when provided with a search query from another modality. Hashing techniques,
where the data is represented as binary bits have specifically gained
importance due to the ease of storage, fast computations and high accuracy. In
real world, the number of data categories is continuously increasing, which
requires algorithms capable of handling this dynamic scenario. In this work, we
propose a novel incremental cross-modal hashing algorithm termed "iCMH", which
can adapt itself to handle incoming data of new categories. The proposed
approach consists of two sequential stages, namely, learning the hash codes and
training the hash functions. At every stage, a small amount of old category
data termed "exemplars" is is used so as not to forget the old data while
trying to learn for the new incoming data, i.e. to avoid catastrophic
forgetting. In the first stage, the hash codes for the exemplars is used, and
simultaneously, hash codes for the new data is computed such that it maintains
the semantic relations with the existing data. For the second stage, we propose
both a non-deep and deep architectures to learn the hash functions effectively.
Extensive experiments across a variety of cross-modal datasets and comparisons
with state-of-the-art cross-modal algorithms shows the usefulness of our
approach.
- Abstract(参考訳): クロスモーダル検索は、あるモダリティから関連するアイテムを検索し、別のモダリティから検索クエリを提供する。
データをバイナリビットとして表現するハッシュ技術は、ストレージの容易さ、高速計算、高精度さによって特に重要になっている。
現実世界では、データカテゴリの数は継続的に増え続けており、この動的なシナリオを処理できるアルゴリズムが必要である。
本研究では,新しいカテゴリの入力データに適応可能な「icmh」と呼ばれる新しい増分的クロスモーダルハッシュアルゴリズムを提案する。
提案手法は,ハッシュコードを学習し,ハッシュ関数を訓練する2つの段階からなる。
各段階では、新しい入力データ、すなわち破滅的な忘れ忘れを避けるために、古いデータを忘れないように、"exemplars"と呼ばれる少数の古いカテゴリデータを使用する。
第1段階では、exemplars用のハッシュコードを使用し、同時に、既存のデータとの意味関係を維持するように、新しいデータのためのハッシュコードを算出する。
第2段階では,ハッシュ関数を効果的に学習するために,非深層アーキテクチャと深層アーキテクチャの両方を提案する。
様々なクロスモーダルデータセットに対する大規模な実験と最先端のクロスモーダルアルゴリズムとの比較は、我々のアプローチの有用性を示している。
関連論文リスト
- Deep Lifelong Cross-modal Hashing [17.278818467305683]
本稿では,ハッシュ関数の再学習を繰り返すのではなく,生涯ハッシュ検索を実現するために,新しい生涯横断ハッシュを提案する。
具体的には、蓄積したすべてのデータを用いて新しいハッシュ関数を再学習する代わりに、インクリメンタルデータを直接訓練することで、ハッシュ関数を更新するための生涯学習戦略を設計する。
検索精度は20%以上で、新しいデータが連続してやってくると、ほぼ80%以上のトレーニング時間を短縮する。
論文 参考訳(メタデータ) (2023-04-26T07:56:22Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
クロスモーダルハッシュは、大規模なマルチメディア検索問題を解決する方法として成功している。
これらの問題に対処する新しい非対称スケーラブルクロスモーダルハッシュ(ASCMH)を提案する。
我々のASCMHは、最先端のクロスモーダルハッシュ法よりも精度と効率の点で優れています。
論文 参考訳(メタデータ) (2022-07-26T04:38:47Z) - Efficient Cross-Modal Retrieval via Deep Binary Hashing and Quantization [5.799838997511804]
クロスモーダル検索は、異なるコンテンツモダリティにまたがる類似の意味を持つデータを検索することを目的としている。
クロスモーダル検索のための共同学習型ディープハッシュ・量子化ネットワーク(HQ)を提案する。
NUS-WIDE、MIR-Flickr、Amazonデータセットの実験結果は、HQの精度が7%以上向上していることを示している。
論文 参考訳(メタデータ) (2022-02-15T22:00:04Z) - MOON: Multi-Hash Codes Joint Learning for Cross-Media Retrieval [30.77157852327981]
クロスメディアハッシュ技術は高い計算効率と低ストレージコストで注目を集めている。
クロスメディア検索のための新しいMultiple hash cOdes jOint learNing法(MOON)を開発した。
論文 参考訳(メタデータ) (2021-08-17T14:47:47Z) - Deep Self-Adaptive Hashing for Image Retrieval [16.768754022585057]
2つの特殊設計で意味情報を適応的にキャプチャするtextbfDeep Self-Adaptive Hashing(DSAH)モデルを提案する。
まず,近辺型類似度行列を構築し,その初期類似度行列を新しい更新戦略で改良する。
第2に、PICを用いたデータペアの優先度を測定し、それらに適応重みを割り当てる。これは、より異種なデータペアがハッシュ学習のためのより差別的な情報を含んでいるという仮定に依存する。
論文 参考訳(メタデータ) (2021-08-16T13:53:20Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Unsupervised Deep Cross-modality Spectral Hashing [65.3842441716661]
このフレームワークは、最適化をバイナリ最適化とハッシュ関数学習に分離する2段階のハッシュアプローチである。
本稿では,単一モダリティと二項相互モダリティを同時に学習するスペクトル埋め込みに基づく新しいアルゴリズムを提案する。
我々は、画像に強力なCNNを活用し、テキストモダリティを学ぶためのCNNベースのディープアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-08-01T09:20:11Z) - Unsupervised Semantic Hashing with Pairwise Reconstruction [22.641786533525245]
本稿では、離散変分オートエンコーダに基づくハッシュモデルであるPairwise Reconstruction(PairRec)を提案する。
PairRecと従来の手法と最先端の手法を実験的に比較し,文書類似性検索のタスクにおいて大幅な性能向上を実現した。
論文 参考訳(メタデータ) (2020-07-01T10:54:27Z) - Reinforcing Short-Length Hashing [61.75883795807109]
既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-24T02:23:52Z) - A Survey on Deep Hashing Methods [52.326472103233854]
最寄りの検索は、データベースからクエリまでの距離が最小のサンプルを取得することを目的としている。
ディープラーニングの発展により、ディープハッシュ法は従来の方法よりも多くの利点を示す。
深い教師付きハッシュは、ペアワイズ法、ランキングベースの方法、ポイントワイズ法、量子化に分類される。
深い教師なしハッシュは、類似性再構築に基づく方法、擬似ラベルに基づく方法、予測自由な自己教師あり学習に基づく方法に分類される。
論文 参考訳(メタデータ) (2020-03-04T08:25:15Z) - Auto-Encoding Twin-Bottleneck Hashing [141.5378966676885]
本稿では,効率よく適応的なコード駆動グラフを提案する。
自動エンコーダのコンテキストでデコードすることで更新される。
ベンチマークデータセットの実験は、最先端のハッシュ手法よりもフレームワークの方が優れていることを明らかに示しています。
論文 参考訳(メタデータ) (2020-02-27T05:58:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。