論文の概要: Reinforcing Short-Length Hashing
- arxiv url: http://arxiv.org/abs/2004.11511v1
- Date: Fri, 24 Apr 2020 02:23:52 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 04:21:22.409323
- Title: Reinforcing Short-Length Hashing
- Title(参考訳): 短距離ハッシュの強化
- Authors: Xingbo Liu, Xiushan Nie, Qi Dai, Yupan Huang, Yilong Yin
- Abstract要約: 既存の手法は、非常に短いハッシュコードを用いた検索性能が劣っている。
本研究では, 短寿命ハッシュ(RSLH)を改良する新しい手法を提案する。
本稿では,ハッシュ表現とセマンティックラベルの相互再構成を行い,セマンティック情報を保存する。
3つの大規模画像ベンチマークの実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
- 参考スコア(独自算出の注目度): 61.75883795807109
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the compelling efficiency in retrieval and storage,
similarity-preserving hashing has been widely applied to approximate nearest
neighbor search in large-scale image retrieval. However, existing methods have
poor performance in retrieval using an extremely short-length hash code due to
weak ability of classification and poor distribution of hash bit. To address
this issue, in this study, we propose a novel reinforcing short-length hashing
(RSLH). In this proposed RSLH, mutual reconstruction between the hash
representation and semantic labels is performed to preserve the semantic
information. Furthermore, to enhance the accuracy of hash representation, a
pairwise similarity matrix is designed to make a balance between accuracy and
training expenditure on memory. In addition, a parameter boosting strategy is
integrated to reinforce the precision with hash bits fusion. Extensive
experiments on three large-scale image benchmarks demonstrate the superior
performance of RSLH under various short-length hashing scenarios.
- Abstract(参考訳): 検索と記憶の効率性が高いため、画像検索において近接する近傍探索に類似性保存ハッシュが広く適用されている。
しかし,従来の手法では,分類能力の弱さやハッシュビット分布の低さから,非常に短いハッシュコードによる検索性能が低下している。
この問題に対処するため,本研究では,新しい強化短長ハッシュ(rslh)を提案する。
本稿では,ハッシュ表現と意味ラベルの相互再構成を行い,意味情報を保存する。
さらに、ハッシュ表現の精度を高めるために、メモリ上でのトレーニング費用と精度のバランスをとるために、ペアワイズ類似度行列を設計する。
さらに、パラメータブースティング戦略を統合して、ハッシュビット融合による精度を強化する。
3つの大規模画像ベンチマークの大規模な実験は、様々な短いハッシュシナリオ下でのRSLHの優れた性能を示す。
関連論文リスト
- Deep Lifelong Cross-modal Hashing [17.278818467305683]
本稿では,ハッシュ関数の再学習を繰り返すのではなく,生涯ハッシュ検索を実現するために,新しい生涯横断ハッシュを提案する。
具体的には、蓄積したすべてのデータを用いて新しいハッシュ関数を再学習する代わりに、インクリメンタルデータを直接訓練することで、ハッシュ関数を更新するための生涯学習戦略を設計する。
検索精度は20%以上で、新しいデータが連続してやってくると、ほぼ80%以上のトレーニング時間を短縮する。
論文 参考訳(メタデータ) (2023-04-26T07:56:22Z) - Unsupervised Multi-Index Semantic Hashing [23.169142004594434]
マルチインデックスハッシュに最適化することで,効率的かつ高効率なハッシュコードを学習する教師なしハッシュモデルを提案する。
文書類似度検索のタスクにおいて、MISHと最先端のセマンティックハッシュベースラインを実験的に比較する。
マルチインデックスハッシュは、線形スキャンと比較してベースラインの効率も向上しますが、MISHよりも33%遅くなっています。
論文 参考訳(メタデータ) (2021-03-26T13:33:48Z) - CIMON: Towards High-quality Hash Codes [63.37321228830102]
我々はtextbfComprehensive stextbfImilarity textbfMining と ctextbfOnsistency leartextbfNing (CIMON) という新しい手法を提案する。
まず、グローバルな洗練と類似度統計分布を用いて、信頼性とスムーズなガイダンスを得る。第二に、意味的整合性学習とコントラスト的整合性学習の両方を導入して、乱不変と差別的ハッシュコードの両方を導出する。
論文 参考訳(メタデータ) (2020-10-15T14:47:14Z) - Deep Hashing with Hash-Consistent Large Margin Proxy Embeddings [65.36757931982469]
画像ハッシュコードは、分類または検索のために訓練された畳み込みニューラルネットワーク(CNN)の埋め込みをバイナライズすることによって生成される。
この曖昧さを解消するために、固定されたプロキシ(CNN分類層の重み)の使用が提案されている。
得られたHCLMプロキシはハッシュ単位の飽和を促進することが示され、小さな二項化誤差が保証される。
論文 参考訳(メタデータ) (2020-07-27T23:47:43Z) - Generative Semantic Hashing Enhanced via Boltzmann Machines [61.688380278649056]
既存の生成ハッシュ法は、主に後部分布の分解形式を仮定する。
本稿では,ボルツマンマシンの分布を検索後部として利用することを提案する。
ハッシュコード内の異なるビット間の相関関係を効果的にモデル化することにより、我々のモデルは大幅な性能向上を達成できることを示す。
論文 参考訳(メタデータ) (2020-06-16T01:23:39Z) - Procrustean Orthogonal Sparse Hashing [3.302605292858623]
昆虫の嗅覚は, スパースハッシュと構造的に, 機能的に類似していることが示されている。
本稿ではこれらの知見を統一する新しい方法であるPOSH(Procrustean Orthogonal Sparse Hashing)を提案する。
本稿では,これらの欠陥に対処する2つの新しい手法,Binary OSLとSphericalHashを提案する。
論文 参考訳(メタデータ) (2020-06-08T18:09:33Z) - Pairwise Supervised Hashing with Bernoulli Variational Auto-Encoder and
Self-Control Gradient Estimator [62.26981903551382]
バイナリ潜在変数を持つ変分自動エンコーダ(VAE)は、文書検索の精度の観点から最先端のパフォーマンスを提供する。
本稿では、クラス内類似度とクラス間類似度に報いるために、個別潜伏型VAEを用いたペアワイズ損失関数を提案する。
この新しいセマンティックハッシュフレームワークは、最先端技術よりも優れたパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-05-21T06:11:33Z) - Targeted Attack for Deep Hashing based Retrieval [57.582221494035856]
本研究では, ディープ・ハッシュ・ターゲット・アタック (DHTA) と呼ばれる新たな手法を提案し, 対象とする攻撃を探索する。
まず、対象の攻撃を点対セットの最適化として定式化し、敵のサンプルのハッシュコードと対象のラベルを持つ対象の集合の平均距離を最小化する。
性能と知覚性のバランスをとるために,摂動に対する$ellinfty$制限の下で,逆例のハッシュコードとアンカーコードとのハミング距離を最小化することを提案する。
論文 参考訳(メタデータ) (2020-04-15T08:36:58Z) - Image Hashing by Minimizing Discrete Component-wise Wasserstein Distance [12.968141477410597]
競合するオートエンコーダは、バランスよく高品質なハッシュコードを生成する堅牢で局所性を保存するハッシュ関数を暗黙的に学習できることが示されている。
既存の逆ハッシュ法は、大規模な画像検索に非効率である。
本稿では,サンプル要求と計算コストを大幅に低減した,新しい対向型オートエンコーダハッシュ手法を提案する。
論文 参考訳(メタデータ) (2020-02-29T00:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。