論文の概要: A hybrid model based on deep LSTM for predicting high-dimensional
chaotic systems
- arxiv url: http://arxiv.org/abs/2002.00799v1
- Date: Tue, 21 Jan 2020 06:47:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-08 00:13:01.207617
- Title: A hybrid model based on deep LSTM for predicting high-dimensional
chaotic systems
- Title(参考訳): 高次元カオス系予測のための深部LSTMに基づくハイブリッドモデル
- Authors: Youming Lei, Jian Hu and Jianpeng Ding
- Abstract要約: 本研究では,深部長短期記憶(LSTM)モデルと動的システムの不正確な経験的モデルを組み合わせたハイブリッド手法を提案する。
提案手法は,カオスアトラクションを再構築する際の多層LSTMモデルの高速分散を効果的に回避できる。
- 参考スコア(独自算出の注目度): 2.094821665776961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hybrid method combining the deep long short-term memory (LSTM)
model with the inexact empirical model of dynamical systems to predict
high-dimensional chaotic systems. The deep hierarchy is encoded into the LSTM
by superimposing multiple recurrent neural network layers and the hybrid model
is trained with the Adam optimization algorithm. The statistical results of the
Mackey-Glass system and the Kuramoto-Sivashinsky system are obtained under the
criteria of root mean square error (RMSE) and anomaly correlation coefficient
(ACC) using the singe-layer LSTM, the multi-layer LSTM, and the corresponding
hybrid method, respectively. The numerical results show that the proposed
method can effectively avoid the rapid divergence of the multi-layer LSTM model
when reconstructing chaotic attractors, and demonstrate the feasibility of the
combination of deep learning based on the gradient descent method and the
empirical model.
- Abstract(参考訳): 本研究では,高次元カオスシステムを予測するために,LSTMモデルと動的システムの不正確な実験モデルを組み合わせたハイブリッド手法を提案する。
深層階層は複数の繰り返しニューラルネットワーク層を重畳することでLSTMにエンコードされ、ハイブリッドモデルはAdam最適化アルゴリズムで訓練される。
マッキーガラス系とクラモト・シヴァシンスキー系の統計結果は,それぞれsinge-layer lstm,多層lstm,対応するハイブリッド法を用いて,根平均二乗誤差 (rmse) と異常相関係数 (acc) の基準で求めた。
数値計算により,カオスアトラクタを再構築する際の多層LSTMモデルの高速分散を効果的に回避できることを示すとともに,勾配降下法と経験的モデルに基づく深層学習の可能性を示す。
関連論文リスト
- Adaptive Fuzzy C-Means with Graph Embedding [84.47075244116782]
ファジィクラスタリングアルゴリズムは、大まかに2つの主要なグループに分類できる: ファジィC平均法(FCM)と混合モデルに基づく方法。
本稿では,FCMを用いたクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T08:15:50Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
本研究では,流体力学応用における物理原理に基づく純粋深層学習モデルとハイブリッドモデルの一般化能力と堅牢性について検討する。
3つの自己回帰モデルを比較した。畳み込み自己エンコーダと畳み込みLSTM、変分自己エンコーダ(VAE)とConvLSTMと適切な分解(POD)とLSTM(POD-DL)を組み合わせたハイブリッドモデルである。
VAEおよびConvLSTMモデルは層流を正確に予測する一方で、ハイブリッドPOD-DLモデルは層流と乱流の双方において他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-04-27T12:43:02Z) - Hybrid hidden Markov LSTM for short-term traffic flow prediction [0.0]
本稿では,交通データの相補的特徴を学習可能なハイブリッド隠れマルコフ-LSTMモデルを提案する。
その結果,従来の手法と比較して,ハイブリッドアーキテクチャを用いた場合の大幅な性能向上が示唆された。
論文 参考訳(メタデータ) (2023-07-11T00:56:44Z) - Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning
Approach [66.53364438507208]
アクティブな再構成可能なインテリジェントサーフェス(RIS)支援マルチユーザダウンリンク通信システムについて検討した。
非直交多重アクセス(NOMA)はスペクトル効率を向上させるために使用され、活性RISはエネルギー回収(EH)によって駆動される。
ユーザの動的通信状態を予測するために,高度なLSTMベースのアルゴリズムを開発した。
増幅行列と位相シフト行列RISを結合制御するためにDDPGに基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-04-11T13:16:28Z) - Bayesian Neural Network Language Modeling for Speech Recognition [59.681758762712754]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端のニューラルネットワーク言語モデル(NNLM)は非常に複雑になりつつある。
本稿では,LSTM-RNN と Transformer LM の基盤となる不確実性を考慮するために,ベイズ学習フレームワークの全体構造を提案する。
論文 参考訳(メタデータ) (2022-08-28T17:50:19Z) - Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning [4.629634111796585]
本研究では,教師付き機械学習(ML)アプローチを適用し,軌道に基づく非線形力学を実現する。
提案したアイデアは、いくつかのサイト・エクシトン電子-フォノンカップリングモデルの力学シミュレーションにおいて信頼性と正確性があることが証明されている。
論文 参考訳(メタデータ) (2022-07-11T01:23:36Z) - Accurate Discharge Coefficient Prediction of Streamlined Weirs by
Coupling Linear Regression and Deep Convolutional Gated Recurrent Unit [2.4475596711637433]
本研究では,CFDシミュレーションに代わるデータ駆動モデリング手法を提案する。
提案した3層階層型DLアルゴリズムは,後続の2つのGRUレベルを結合した畳み込み層で構成されており,LR法とハイブリダイゼーションすることで,誤差の低減につながることがわかった。
論文 参考訳(メタデータ) (2022-04-12T01:59:36Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - Compressing LSTM Networks by Matrix Product Operators [7.395226141345625]
Long Short Term Memory(LSTM)モデルは、多くの最先端自然言語処理(NLP)と音声強調(SE)アルゴリズムの構築ブロックである。
ここでは、量子多体物理学における量子状態の局所的相関を記述するMPO分解を紹介する。
LSTMモデルを置き換えるために,行列積演算子(MPO)に基づくニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-22T11:50:06Z) - Estimation of Switched Markov Polynomial NARX models [75.91002178647165]
非線形自己回帰(NARX)成分を特徴とするハイブリッド力学系のモデル群を同定する。
提案手法は, 特定の回帰器を持つ3つの非線形サブモデルからなるSMNARX問題に対して実証される。
論文 参考訳(メタデータ) (2020-09-29T15:00:47Z) - Kernel and Rich Regimes in Overparametrized Models [69.40899443842443]
過度にパラメータ化された多層ネットワーク上の勾配勾配は、RKHSノルムではないリッチな暗黙バイアスを誘発できることを示す。
また、より複雑な行列分解モデルと多層非線形ネットワークに対して、この遷移を実証的に示す。
論文 参考訳(メタデータ) (2020-02-20T15:43:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。