論文の概要: Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning
- arxiv url: http://arxiv.org/abs/2207.05556v1
- Date: Mon, 11 Jul 2022 01:23:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-05 12:06:15.948538
- Title: Realization of the Trajectory Propagation in the MM-SQC Dynamics by
Using Machine Learning
- Title(参考訳): 機械学習を用いたMM-SQCダイナミクスにおける軌道伝搬の実現
- Authors: Kunni Lin, Jiawei Peng, Chao Xu, Feng Long Gu and Zhenggang Lan
- Abstract要約: 本研究では,教師付き機械学習(ML)アプローチを適用し,軌道に基づく非線形力学を実現する。
提案したアイデアは、いくつかのサイト・エクシトン電子-フォノンカップリングモデルの力学シミュレーションにおいて信頼性と正確性があることが証明されている。
- 参考スコア(独自算出の注目度): 4.629634111796585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The supervised machine learning (ML) approach is applied to realize the
trajectory-based nonadiabatic dynamics within the framework of the symmetrical
quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian
(MM-SQC). After the construction of the long short-term memory recurrent neural
network (LSTM-RNN) model, it is used to perform the entire trajectory
evolutions from initial sampling conditions. The proposed idea is proven to be
reliable and accurate in the simulations of the dynamics of several
site-exciton electron-phonon coupling models, which cover two-site and
three-site systems with biased and unbiased energy levels, as well as include a
few or many phonon modes. The LSTM-RNN approach also shows the powerful ability
to obtain the accurate and stable results for the long-time evolutions. It
indicates that the LSTM-RNN model perfectly captures of dynamical correction
information in the trajectory evolution in the MM-SQC dynamics. Our work
provides the possibility to employ the ML methods in the simulation of the
trajectory-based nonadiabatic dynamic of complex systems with a large number of
degrees of freedoms.
- Abstract(参考訳): メイヤー・ミラー写像ハミルトニアン (MM-SQC) に基づく対称準古典力学法の枠組みにおいて, 軌道に基づく非線形力学を実現するために, 教師付き機械学習 (ML) アプローチを適用した。
長い短期記憶リカレントニューラルネットワーク(LSTM-RNN)モデルの構築後、最初のサンプリング条件から軌道の進化全体を実行するために使用される。
提案手法は,複数の電子-フォノンカップリング模型の動力学シミュレーションにおいて,偏りや偏りのないエネルギー準位を持つ2点および3点系を対象とし,数点以上のフォノンモードを含むように,信頼性と正確性が証明された。
LSTM-RNNアプローチはまた、長期進化の正確かつ安定した結果を得る強力な能力を示している。
LSTM-RNNモデルは, MM-SQC力学における軌道進化における動的補正情報を完璧に捉えていることを示す。
我々の研究は、多くの自由度を持つ複素系の軌道に基づく非線形力学のシミュレーションにML法を用いる可能性を提供する。
関連論文リスト
- A short trajectory is all you need: A transformer-based model for long-time dissipative quantum dynamics [0.0]
深層人工知能ニューラルネットワークは、散逸環境に結合した量子システムの長時間の人口動態を予測することができることを示す。
我々のモデルは、リカレントニューラルネットワークのような古典的な予測モデルよりも正確です。
論文 参考訳(メタデータ) (2024-09-17T16:17:52Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間シーケンスデータを表現するために設計された深部力学モデルの新しいファミリを紹介する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
発振システム、ビデオ、実世界の状態シーケンス(MuJoCo)の実験は、学習可能なエネルギーベース以前のODEが既存のものより優れていることを示している。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
ガウス過程スイッチング線形力学系(gpSLDS)の2つの目的をバランスさせるアプローチを開発する。
我々の手法は、非線形力学をガウス過程(GP-SDE)で記述した微分方程式による潜在状態の進化をモデル化した以前の研究に基づいている。
本手法は, 離散状態境界近傍の力学における人工振動など, rSLDS の重要な限界を解消するとともに, 力学の後方不確かさを推定する。
論文 参考訳(メタデータ) (2024-07-19T15:32:15Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Generalization capabilities and robustness of hybrid machine learning models grounded in flow physics compared to purely deep learning models [2.8686437689115363]
本研究では,流体力学応用における物理原理に基づく純粋深層学習モデルとハイブリッドモデルの一般化能力と堅牢性について検討する。
3つの自己回帰モデルを比較した。畳み込み自己エンコーダと畳み込みLSTM、変分自己エンコーダ(VAE)とConvLSTMと適切な分解(POD)とLSTM(POD-DL)を組み合わせたハイブリッドモデルである。
VAEおよびConvLSTMモデルは層流を正確に予測する一方で、ハイブリッドPOD-DLモデルは層流と乱流の双方において他のモデルよりも優れていた。
論文 参考訳(メタデータ) (2024-04-27T12:43:02Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
我々は,計算効率が高く正確なモデルパラメータ推定とベイジアン潜在状態推定を提供する変分連続モンテカルロ法(VSMC)を構築した。
オンラインVSMCは、パラメータ推定と粒子提案適応の両方を効率よく、完全にオンザフライで実行することができる。
論文 参考訳(メタデータ) (2023-12-19T21:45:38Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
本稿では,DNNに基づく動的モデリングの信頼性を向上させるために,ConCerNetという新しい学習フレームワークを提案する。
本手法は, 座標誤差と保存量の両方において, ベースラインニューラルネットワークよりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-02-11T21:07:30Z) - Automatic Evolution of Machine-Learning based Quantum Dynamics with
Uncertainty Analysis [4.629634111796585]
長期記憶リカレントニューラルネットワーク(LSTM-RNN)モデルは、長期量子力学をシミュレートするために用いられる。
この研究は、オープン量子システムの動的進化をシミュレートする効果的な機械学習アプローチを構築する。
論文 参考訳(メタデータ) (2022-05-07T08:53:55Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
データからシステムの微分可能なダイナミクスモデルを学習するために、機械学習技術を使用します。
ニューラルネットワークは、大規模な時間的地平線に対して、非常に非線形な振る舞いを正確にモデル化できることが示される。
ハードウェア実験において、学習したモデルがSpotとRadio- controlled (RC)の両方の複雑な力学を表現できることを実証した。
論文 参考訳(メタデータ) (2022-04-09T22:07:34Z) - Learning Stochastic Dynamics with Statistics-Informed Neural Network [0.4297070083645049]
データからダイナミクスを学習するための、統計情報ニューラルネットワーク(SINN)という機械学習フレームワークを導入する。
本研究では,ニューラルネットワークモデルの学習機構を考案し,対象プロセスの正しい統計的挙動を再現する。
得られた低次モデルが時間的に粗い粒度データに基づいて訓練可能であることを示す。
論文 参考訳(メタデータ) (2022-02-24T18:21:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。