Weak values from path integrals
- URL: http://arxiv.org/abs/2002.00832v2
- Date: Mon, 24 Aug 2020 12:12:04 GMT
- Title: Weak values from path integrals
- Authors: A. Matzkin
- Abstract summary: We show how Feynman propagators can in principle be experimentally inferred from weak value measurements.
We obtain expressions for weak values parsing unambiguously the quantum and the classical aspects of weak couplings between a system and a probe.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We connect the weak measurements framework to the path integral formulation
of quantum mechanics. We show how Feynman propagators can in principle be
experimentally inferred from weak value measurements. We also obtain
expressions for weak values parsing unambiguously the quantum and the classical
aspects of weak couplings between a system and a probe. These expressions are
shown to be useful in quantum chaos related studies (an illustration involving
quantum scars is given), and also in solving current weak-value related
controversies (we discuss the existence of discontinuous trajectories in
interferometers and the issue of anomalous weak values in the classical limit).
Related papers
- Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Quantification of Entanglement and Coherence with Purity Detection [16.01598003770752]
Entanglement and coherence are fundamental properties of quantum systems, promising to power near future quantum technologies.
Here, we demonstrate quantitative bounds to operationally useful entanglement and coherence.
Our research offers an efficient means of verifying large-scale quantum information processing.
arXiv Detail & Related papers (2023-08-14T11:03:40Z) - Revisiting weak values through non-normality [0.0]
We show that any weak value can be expressed as the expectation value of a suitable non-normal operator.
Our study paves the way for a deeper understanding of the measurement phenomenon.
arXiv Detail & Related papers (2023-06-02T09:39:07Z) - Finitely Repeated Adversarial Quantum Hypothesis Testing [22.102728605081534]
We formulate a passive quantum detector based on a quantum hypothesis testing framework under the setting of finite sample size.
Under the assumption that the attacker adopts separable optimal strategies, we derive that the worst-case average error bound converges to zero exponentially.
We adopt our formulations upon a case study of detection with quantum radars.
arXiv Detail & Related papers (2022-12-02T17:08:17Z) - Spin operator, Bell nonlocality and Tsirelson bound in quantum-gravity
induced minimal-length quantum mechanics [0.0]
We show that the spin operator acquires a momentum-dependent contribution in quantum mechanics equipped with a minimal length.
Among other consequences, this modification induces a form of quantum nonlocality stronger than the one arising in ordinary quantum mechanics.
arXiv Detail & Related papers (2022-07-21T11:22:33Z) - Quantum nonreciprocal interactions via dissipative gauge symmetry [18.218574433422535]
One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
arXiv Detail & Related papers (2022-03-17T15:34:40Z) - Comment on "Does the weak trace show the past of a quantum particle?" [0.0]
We argue that null weak values of the spatial projectors are inadequate to infer the presence of a quantum particle at an intermediate time between preparation and detection.
This conclusion relies on two arguments - (i) the role of the disturbance induced by a weak measurement, and (ii) classical-like features like continuous paths that must purportedly be associated with a quantum particle presence.
arXiv Detail & Related papers (2022-02-23T15:47:03Z) - Weak values and the past of a quantum particle [0.0]
We investigate four key issues with using a nonzero weak value of the spatial projection operator to infer the past path of a quantum particle.
We note that weak measurements disturb a system, so any approach relying on such a perturbation to determine the location of a quantum particle describes the state of a disturbed system.
We know of no experiment with testable consequences that demonstrates a connection between particle presence and weak values.
arXiv Detail & Related papers (2021-09-28T21:44:13Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - The Transition from Quantum to Classical in weak measurements and
reconstruction of Quantum Correlation [0.0]
We show that the relation between the readout signal of a single electron spin and the quantum dynamics of the single nuclear spin is given by a parameter related to the measurement strength.
We prove the validity of our approach by measuring violations of the Leggett-Garg inequality.
arXiv Detail & Related papers (2021-04-09T17:46:55Z) - Using Quantum Metrological Bounds in Quantum Error Correction: A Simple
Proof of the Approximate Eastin-Knill Theorem [77.34726150561087]
We present a proof of the approximate Eastin-Knill theorem, which connects the quality of a quantum error-correcting code with its ability to achieve a universal set of logical gates.
Our derivation employs powerful bounds on the quantum Fisher information in generic quantum metrological protocols.
arXiv Detail & Related papers (2020-04-24T17:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.