Quantum nonreciprocal interactions via dissipative gauge symmetry
- URL: http://arxiv.org/abs/2203.09392v1
- Date: Thu, 17 Mar 2022 15:34:40 GMT
- Title: Quantum nonreciprocal interactions via dissipative gauge symmetry
- Authors: Yu-Xin Wang, Chen Wang, Aashish A. Clerk
- Abstract summary: One-way nonreciprocal interactions between two quantum systems are typically described by a cascaded quantum master equation.
We present a new approach for obtaining nonreciprocal quantum interactions that is completely distinct from cascaded quantum systems.
- Score: 18.218574433422535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One-way nonreciprocal interactions between two quantum systems are typically
described by a cascaded quantum master equation, and rely on an effective
breaking of time-reversal symmetry as well as the balancing of coherent and
dissipative interactions. Here, we present a new approach for obtaining
nonreciprocal quantum interactions that is completely distinct from cascaded
quantum systems, and that does not in general require broken TRS. Our method
relies on a local gauge symmetry present in any Markovian Lindblad master
equation. This new kind of quantum nonreciprocity has many implications,
including a new mechanism for performing dissipatively-stabilized gate
operations on a target quantum system. We also introduce a new, extremely
general quantum-information based metric for quantifying quantum
nonreciprocity.
Related papers
- Attractive-repulsive interaction in coupled quantum oscillators [14.37149160708975]
We find an interesting symmetry-breaking transition from quantum limit cycle oscillation to quantum inhomogeneous steady state.
This transition is contrary to the previously known symmetry-breaking transition from quantum homogeneous to inhomogeneous steady state.
Remarkably, we find the generation of entanglement associated with the symmetry-breaking transition that has no analogue in the classical domain.
arXiv Detail & Related papers (2024-08-23T10:45:19Z) - Quantum steering ellipsoids and quantum obesity in critical systems [0.0]
Quantum obesity (QO) is new function used to quantify quantum correlations beyond entanglement.
We show that QO is a fundamental quantity to observe signature of quantum phase transitions.
arXiv Detail & Related papers (2023-12-19T19:14:08Z) - Reliable Quantum Communications based on Asymmetry in Distillation and Coding [35.693513369212646]
We address the problem of reliable provision of entangled qubits in quantum computing schemes.
We combine indirect transmission based on teleportation and distillation; (2) direct transmission, based on quantum error correction (QEC)
Our results show that ad-hoc asymmetric codes give, compared to conventional QEC, a performance boost and codeword size reduction both in a single link and in a quantum network scenario.
arXiv Detail & Related papers (2023-05-01T17:13:23Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Dissipative quasi-particle picture for quadratic Markovian open quantum
systems [0.0]
Correlations between different regions of a quantum many-body system can be quantified.
For closed systems, analytical and numerical tools can accurately capture the time-evolution of subsystem entropies.
Here, we make progress by formulating a dissipative quasi-particle picture for a general class of noninteracting open quantum systems.
arXiv Detail & Related papers (2021-06-22T18:10:47Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Relaxation to Equilibrium in a Quantum Network [0.0]
We study the relaxation to equilibrium for a fully connected quantum network with CNOT gates.
We give a number of results for the equilibration in these systems, including analytic estimates.
arXiv Detail & Related papers (2020-09-28T22:15:35Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z) - Reading a qubit quantum state with a quantum meter: time unfolding of
quantum Darwinism and quantum information flux [0.0]
Quantum non Markovianity and quantum Darwinism are two phenomena linked by a common theme: the flux of quantum information between a quantum system and the quantum environment it interacts with.
We will show how, in some regimes, such quantum information flux is inefficient, leading to the simultaneous emergence of non Markovian and non darwinistic behaviours.
arXiv Detail & Related papers (2020-01-30T20:37:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.