論文の概要: A Kernel of Truth: Determining Rumor Veracity on Twitter by Diffusion
Pattern Alone
- arxiv url: http://arxiv.org/abs/2002.00850v2
- Date: Thu, 6 Feb 2020 14:30:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-06 02:32:58.494794
- Title: A Kernel of Truth: Determining Rumor Veracity on Twitter by Diffusion
Pattern Alone
- Title(参考訳): 真実のカーネル:Diffusion Pattern AloneによるTwitterの噂の正確性決定
- Authors: Nir Rosenfeld, Aron Szanto, David C. Parkes
- Abstract要約: 誤情報検出分野における最近の研究は、ソーシャルメディア上のコンテンツに関連するテキストやユーザアイデンティティのリッチな信号を活用している。
我々は,情報伝達パターンという,自然に堅牢な代替モダリティについて検討する。
グラフカーネルを用いて、Twitterのカスケード構造から複雑なトポロジ情報を抽出する。
- 参考スコア(独自算出の注目度): 28.91437072569273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent work in the domain of misinformation detection has leveraged rich
signals in the text and user identities associated with content on social
media. But text can be strategically manipulated and accounts reopened under
different aliases, suggesting that these approaches are inherently brittle. In
this work, we investigate an alternative modality that is naturally robust: the
pattern in which information propagates. Can the veracity of an unverified
rumor spreading online be discerned solely on the basis of its pattern of
diffusion through the social network?
Using graph kernels to extract complex topological information from Twitter
cascade structures, we train accurate predictive models that are blind to
language, user identities, and time, demonstrating for the first time that such
"sanitized" diffusion patterns are highly informative of veracity. Our results
indicate that, with proper aggregation, the collective sharing pattern of the
crowd may reveal powerful signals of rumor truth or falsehood, even in the
early stages of propagation.
- Abstract(参考訳): 誤情報検出分野における最近の研究は、ソーシャルメディア上のコンテンツに関連するテキストやユーザアイデンティティのリッチな信号を活用している。
しかし、テキストは戦略的に操作され、異なるエイリアスの下でアカウントが再開されるため、これらのアプローチは本質的に脆弱である。
本研究では,情報伝達パターンという,自然に堅牢な代替モダリティについて検討する。
ネット上で広まる不確実な噂の真偽は、ソーシャルネットワークを通じて拡散するパターンに基づいてのみ識別できるのだろうか?
グラフカーネルを用いて、Twitterのカスケード構造から複雑なトポロジ情報を抽出し、言語、ユーザアイデンティティ、時間に不自由な正確な予測モデルをトレーニングし、このような「衛生的」拡散パターンが極めて正確であることを初めて示す。
以上の結果から,群集の集合的共有パターンは,伝播の初期段階においても,噂の真偽や虚偽の強力なシグナルを明らかにする可能性が示唆された。
関連論文リスト
- Epidemiology-informed Network for Robust Rumor Detection [59.89351792706995]
本稿では, 疫学知識を統合し, 性能を高めるための新しい疫学情報ネットワーク(EIN)を提案する。
疫学理論をうわさ検出に適応させるため,各利用者が情報源情報に対する姿勢を付加することが期待されている。
実験結果から,提案したEINは実世界のデータセット上で最先端の手法より優れるだけでなく,樹木の深度にまたがる堅牢性も向上することが示された。
論文 参考訳(メタデータ) (2024-11-20T00:43:32Z) - Detecting, Explaining, and Mitigating Memorization in Diffusion Models [49.438362005962375]
そこで本研究では,テキスト条件予測の大きさを検査することで,暗黙のプロンプトを検出する方法を提案する。
提案手法はサンプリングアルゴリズムを中断することなくシームレスに統合し,第1世代でも高い精度を実現する。
検出戦略に基づいて,個々の単語やトークンの記憶への寄与を示す説明可能なアプローチを提示する。
論文 参考訳(メタデータ) (2024-07-31T16:13:29Z) - Rumor Detection with a novel graph neural network approach [12.42658463552019]
ソーシャルメディア上での噂を検出するために,ユーザ相関と情報伝達の表現を共同で学習する新しい検出モデルを提案する。
具体的には、グラフニューラルネットワークを利用して、二部グラフからユーザ相関の表現を学習する。
本研究では,ユーザ相関パターンを逆転させるには高いコストが必要であることを示すとともに,ユーザ相関をうわさ検出のために考慮することの重要性を示す。
論文 参考訳(メタデータ) (2024-03-24T15:59:47Z) - TESS: Text-to-Text Self-Conditioned Simplex Diffusion [56.881170312435444]
テキストからテキストへの自己条件付きSimplex Diffusionは、新しい形式のセルフコンディショニングを採用し、学習された埋め込み空間ではなく、ロジット単純空間に拡散プロセスを適用する。
我々は、TESSが最先端の非自己回帰モデルより優れており、性能の低下を最小限に抑えた拡散ステップを少なくし、事前訓練された自己回帰列列列列モデルと競合することを示した。
論文 参考訳(メタデータ) (2023-05-15T06:33:45Z) - A Unified Contrastive Transfer Framework with Propagation Structure for
Boosting Low-Resource Rumor Detection [11.201348902221257]
既存の噂検出アルゴリズムは 昨日のニュースで 有望な性能を見せています
十分なトレーニングデータや事前の専門家知識が欠如しているため、予期せぬ出来事に関する噂を見つけるのが苦手である。
本稿では,十分な情報源から得られた特徴を,少数のアノテーションで少ない資料に適応させることで,噂を検出するための一貫したコントラスト転送フレームワークを提案する。
論文 参考訳(メタデータ) (2023-04-04T03:13:03Z) - Rumor Detection with Self-supervised Learning on Texts and Social Graph [101.94546286960642]
異種情報ソース上での自己教師型学習を対照的に提案し,それらの関係を明らかにするとともに,噂をよりよく特徴付ける。
我々はこの枠組みをSRD(Self-supervised Rumor Detection)と呼ぶ。
3つの実世界のデータセットに対する大規模な実験により、ソーシャルメディア上での噂の自動検出におけるSRDの有効性が検証された。
論文 参考訳(メタデータ) (2022-04-19T12:10:03Z) - Truncated Diffusion Probabilistic Models and Diffusion-based Adversarial
Auto-Encoders [137.1060633388405]
拡散に基づく生成モデルは、逆拡散連鎖を推論してデータを生成する方法を学ぶ。
我々は、データが純粋なランダムノイズになるまで、より高速で安価にノイズを付加するアプローチを提案する。
提案手法は,拡散過程と学習可能な暗黙的前処理の両方によって付与された逆自動エンコーダとしてキャスト可能であることを示す。
論文 参考訳(メタデータ) (2022-02-19T20:18:49Z) - Heterogeneous Graph Attention Networks for Early Detection of Rumors on
Twitter [9.358510255345676]
ソーシャルメディアに関する偽の噂は、大衆のパニックを招き、個人的評判を損なう可能性がある。
我々は、テキストの内容と噂の発信元であるツイートの伝搬に基づいて、ツイートワードを利用する異種グラフを構築した。
論文 参考訳(メタデータ) (2020-06-10T14:49:08Z) - An Information Diffusion Approach to Rumor Propagation and
Identification on Twitter [0.0]
われわれは,Twitter上での顕微鏡レベルの誤情報拡散のダイナミクスについて検討した。
われわれの調査によると、噂のカスケードはより深く流れ、その噂はニュースとして隠され、恐怖を喚起するメッセージは他のメッセージよりも急速に拡散する。
論文 参考訳(メタデータ) (2020-02-24T20:04:54Z) - Rumor Detection on Social Media with Bi-Directional Graph Convolutional
Networks [89.13567439679709]
本稿では,二方向グラフ畳み込みネットワーク (Bi-Directional Graph Convolutional Networks, Bi-GCN) と呼ばれる新しい双方向グラフモデルを提案する。
これは、噂拡散のパターンを学習するために、噂拡散のトップダウン指向グラフを持つGCNと、噂拡散の反対指向グラフを持つGCNを活用して、噂拡散の構造を捉える。
論文 参考訳(メタデータ) (2020-01-17T15:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。