ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation
- URL: http://arxiv.org/abs/2009.12894v1
- Date: Sun, 27 Sep 2020 16:42:59 GMT
- Title: ESTAN: Enhanced Small Tumor-Aware Network for Breast Ultrasound Image
Segmentation
- Authors: Bryar Shareef, Alex Vakanski, Min Xian, Phoebe E. Freer
- Abstract summary: We propose a novel deep neural network architecture, namely Enhanced Small Tumor-Aware Network (ESTAN) to accurately segment breast tumors.
ESTAN introduces two encoders to extract and fuse image context information at different scales and utilizes row-column-wise kernels in the encoder to adapt to breast anatomy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast tumor segmentation is a critical task in computer-aided diagnosis
(CAD) systems for breast cancer detection because accurate tumor size, shape
and location are important for further tumor quantification and classification.
However, segmenting small tumors in ultrasound images is challenging, due to
the speckle noise, varying tumor shapes and sizes among patients, and the
existence of tumor-like image regions. Recently, deep learning-based approaches
have achieved great success for biomedical image analysis, but current
state-of-the-art approaches achieve poor performance for segmenting small
breast tumors. In this paper, we propose a novel deep neural network
architecture, namely Enhanced Small Tumor-Aware Network (ESTAN), to accurately
and robustly segment breast tumors. ESTAN introduces two encoders to extract
and fuse image context information at different scales and utilizes
row-column-wise kernels in the encoder to adapt to breast anatomy. We validate
the proposed approach and compare it to nine state-of-the-art approaches on
three public breast ultrasound datasets using seven quantitative metrics. The
results demonstrate that the proposed approach achieves the best overall
performance and outperforms all other approaches on small tumor segmentation.
Related papers
- Multilevel Perception Boundary-guided Network for Breast Lesion
Segmentation in Ultrasound Images [9.252383213566947]
We propose a PBNet composed by a multilevel global perception module (MGPM) and a boundary guided module (BGM) to segment breast tumors from ultrasound images.
In MGPM, the long-range spatial dependence between the voxels in a single level feature maps are modeled, and then the multilevel semantic information is fused.
In BGM, the tumor boundaries are extracted from the high-level semantic maps using the dilation and erosion effects of max pooling.
arXiv Detail & Related papers (2023-10-23T07:21:02Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADS is a novel explainable deep learning approach for tumor detection in Breast Ultrasound (BUS) images.
It offers three levels of explanations to enable radiologists to comprehend the decision-making process in predicting tumor malignancy.
arXiv Detail & Related papers (2023-08-27T22:07:42Z) - Comparative Analysis of Segment Anything Model and U-Net for Breast
Tumor Detection in Ultrasound and Mammography Images [0.15833270109954137]
The technique employs two advanced deep learning architectures, namely U-Net and pretrained SAM, for tumor segmentation.
The U-Net model is specifically designed for medical image segmentation.
The pretrained SAM architecture incorporates a mechanism to capture spatial dependencies and generate segmentation results.
arXiv Detail & Related papers (2023-06-21T18:49:21Z) - BreastSAM: A Study of Segment Anything Model for Breast Tumor Detection
in Ultrasound Images [2.752682633344525]
We investigated the Segment Anything Model (SAM) for the task of interactive segmentation of breast tumors in ultrasound images.
We explored three pre-trained model variants: ViT_h, ViT_l, and ViT_b, among which ViT_l demonstrated superior performance in terms of mean pixel accuracy, Dice score, and IoU score.
The study further evaluated the model's differential performance in segmenting malignant and benign breast tumors, with the model showing exceptional proficiency in both categories.
arXiv Detail & Related papers (2023-05-21T12:40:25Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Learned super resolution ultrasound for improved breast lesion
characterization [52.77024349608834]
Super resolution ultrasound localization microscopy enables imaging of the microvasculature at the capillary level.
In this work we use a deep neural network architecture that makes effective use of signal structure to address these challenges.
By leveraging our trained network, the microvasculature structure is recovered in a short time, without prior PSF knowledge, and without requiring separability of the UCAs.
arXiv Detail & Related papers (2021-07-12T09:04:20Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.