論文の概要: Centimeter-Level Indoor Localization using Channel State Information
with Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2002.01411v1
- Date: Tue, 4 Feb 2020 17:10:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-04 03:35:00.276597
- Title: Centimeter-Level Indoor Localization using Channel State Information
with Recurrent Neural Networks
- Title(参考訳): リカレントニューラルネットワークを用いたチャネル状態情報を用いたセンチメートルレベルの屋内定位
- Authors: Jianyuan Yu, R. Michael Buehrer
- Abstract要約: 本稿では,線形アンテナから収集した実CSIデータを用いて,センチメートルレベルの屋内位置推定を行うニューラルネットワーク手法を提案する。
チャネル応答の振幅または相関行列を入力として使用することにより、データサイズを大幅に削減し、ノイズを抑制することができる。
また、リカレントニューラルネットワーク(RNN)と信号雑音比(SNR)情報によるユーザ動作軌跡の整合性を利用して、推定精度をさらに向上する。
- 参考スコア(独自算出の注目度): 12.193558591962754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern techniques in the Internet of Things or autonomous driving require
more accuracy positioning ever. Classic location techniques mainly adapt to
outdoor scenarios, while they do not meet the requirement of indoor cases with
multiple paths. Meanwhile as a feature robust to noise and time variations,
Channel State Information (CSI) has shown its advantages over Received Signal
Strength Indicator (RSSI) at more accurate positioning. To this end, this paper
proposes the neural network method to estimate the centimeter-level indoor
positioning with real CSI data collected from linear antennas. It utilizes an
amplitude of channel response or a correlation matrix as the input, which can
highly reduce the data size and suppress the noise. Also, it makes use of the
consistency in the user motion trajectory via Recurrent Neural Network (RNN)
and signal-noise ratio (SNR) information, which can further improve the
estimation accuracy, especially in small datasize learning. These contributions
all benefit the efficiency of the neural network, based on the results with
other classic supervised learning methods.
- Abstract(参考訳): モノのインターネットや自動運転の現代的な技術は、より正確な位置決めを必要とする。
古典的な位置技術は主に屋外のシナリオに適応するが、複数の経路を持つ屋内のケースの要件を満たさない。
一方、ノイズや時間変化にロバストな特徴として、チャネル状態情報(csi)はより正確な測位において、受信信号強度指標(rssi)よりも優れていることが示されている。
そこで本稿では,線形アンテナから収集した実CSIデータを用いて,センチメートルレベルの屋内位置推定を行うニューラルネットワーク手法を提案する。
チャネル応答の振幅または相関行列を入力として使用することにより、データサイズを大幅に削減し、ノイズを抑制することができる。
また、リカレントニューラルネットワーク(RNN)と信号雑音比(SNR)情報によるユーザ動作軌跡の整合性を利用して、特に小型データ学習における推定精度をさらに向上させることができる。
これらの貢献はすべて、他の古典的な教師付き学習方法の結果に基づいて、ニューラルネットワークの効率に恩恵をもたらします。
関連論文リスト
- NIDS Neural Networks Using Sliding Time Window Data Processing with Trainable Activations and its Generalization Capability [0.0]
本稿では,ネットワーク侵入検知システム(NIDS)のためのニューラルネットワークについて述べる。
ディープパケットインスペクションに頼らず、ほとんどのNIDSデータセットで見つからず、従来のフローコレクタから簡単に取得できる11の機能しか必要としない。
報告されたトレーニング精度は、提案手法の99%を超え、ニューラルネットワークの入力特性は20に満たない。
論文 参考訳(メタデータ) (2024-10-24T11:36:19Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - Autoregressive Attention Neural Networks for Non-Line-of-Sight User
Tracking with Dynamic Metasurface Antennas [20.416982017315014]
非LoSマルチパス設定に特化して設計された,ユーザ追跡のための2段階の機械学習ベースのアプローチを提案する。
新しく提案された注目に基づくニューラルネットワーク(NN)は、ノイズの多いチャネル応答を潜在的なユーザ位置にマッピングするために最初に訓練される。
第2の段階として、NNの過去のユーザ位置の予測は学習可能な自己回帰モデルに渡される。
論文 参考訳(メタデータ) (2023-10-30T17:38:16Z) - Model-based learning for location-to-channel mapping [0.0]
本稿では,ターゲットマッピング関数の高周波成分から低周波を分離するフラガー型モデルベースネットワークを提案する。
これにより、ニューラルネットワークは、高周波成分の辞書において、低周波スパース係数のみを学習するハイパーネットワークアーキテクチャが得られる。
シミュレーションの結果,提案したニューラルネットワークは,現実的な合成データに対する標準的なアプローチよりも優れていた。
論文 参考訳(メタデータ) (2023-08-28T07:39:53Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - CONet: Channel Optimization for Convolutional Neural Networks [33.58529066005248]
畳み込みニューラルネットワーク(CNN)におけるチャネルサイズ最適化の検討
ネットワーク層をまたいだCNNのチャネルサイズを自動的に最適化する,効率的な動的スケーリングアルゴリズムであるConetを導入します。
CIFAR10/100およびImageNetデータセット上で実験を行い、ConetがResNet、DARTS、DARTS+空間で探索された効率的で正確なアーキテクチャを見つけることができることを示す。
論文 参考訳(メタデータ) (2021-08-15T21:48:25Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
そこでは,観測観測のために,既知の基地局とRIS位相制御行列を併用したアップリンクチャネル推定手法を提案する。
推定性能を向上し, トレーニングオーバーヘッドを低減するため, 深部展開法において, mmWaveチャネルの固有チャネル幅を生かした。
提案したディープ・アンフォールディング・ネットワーク・アーキテクチャは,トレーニングオーバーヘッドが比較的小さく,オンライン計算の複雑さも比較的小さく,最小二乗法(LS)法より優れていることが確認された。
論文 参考訳(メタデータ) (2021-07-27T06:57:56Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
本稿では,正弦波数を検出するニューラルネットワークアーキテクチャであるSignalNetを提案する。
基礎となるデータ分布と比較して,ネットワークの結果を比較するための最悪の学習しきい値を導入する。
シミュレーションでは、我々のアルゴリズムは常に3ビットデータのしきい値を超えることができるが、しばしば1ビットデータのしきい値を超えることはできない。
論文 参考訳(メタデータ) (2021-06-10T04:21:20Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
本稿では,コモディティ・チップセットと標準チャネル・サウンドによるWiFi機器の屋内位置推定について検討する。
本稿では、異なるアンテナで受信されたWiFiサブキャリアに対応するチャネル状態情報から特徴を抽出する、新しい浅層ニューラルネットワーク(SNN)を提案する。
論文 参考訳(メタデータ) (2020-10-16T22:48:29Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。