Mean Value of the Quantum Potential and Uncertainty Relations
- URL: http://arxiv.org/abs/2002.01507v2
- Date: Thu, 7 May 2020 16:33:16 GMT
- Title: Mean Value of the Quantum Potential and Uncertainty Relations
- Authors: F. Nicacio, and F.T. Falciano
- Abstract summary: In this work we determine a lower bound to the mean value of the quantum potential for an arbitrary state.
We derive a generalized uncertainty relation that is stronger than the Robertson-Schr"odinger inequality and hence also stronger than the Heisenberg uncertainty principle.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work we determine a lower bound to the mean value of the quantum
potential for an arbitrary state. Furthermore, we derive a generalized
uncertainty relation that is stronger than the Robertson-Schr\"odinger
inequality and hence also stronger than the Heisenberg uncertainty principle.
The mean value is then associated to the nonclassical part of the covariances
of the momenta operator. This imposes a minimum bound for the nonclassical
correlations of momenta and gives a physical characterization of the classical
and semiclassical limits of quantum systems. The results obtained primarily for
pure states are then generalized for density matrices describing mixed states.
Related papers
- Certifying the quantumness of a nuclear spin qudit through its uniform precession [28.4073170440133]
We certify the quantumness of exotic states of a nuclear spin through its uniform precession.
The experiment is performed on a single spin-7/2 $123$Sb nucleus implanted in a silicon nanoelectronic device.
arXiv Detail & Related papers (2024-10-10T06:20:41Z) - Sufficient conditions, lower bounds and trade-off relations for quantumness in Kirkwood-Dirac quasiprobability [0.0]
Kirkwood-Dirac (KD) quasiprobability is a quantum analog of classical phase space probability.
It offers an informationally complete representation of quantum state.
How does such form of quantumness comply with the uncertainty principle which also arise from quantum noncommutativity?
arXiv Detail & Related papers (2024-05-14T05:44:07Z) - Quantum speed limit for Kirkwood-Dirac quasiprobabilities [0.0]
We derive quantum speed limits for two-time correlation functions arising from statistics of measurements.
Our quantum speed limits are derived from the Heisenberg-Robertson uncertainty relation, and set the minimal time at which a quasiprobability can become non-positive.
As an illustrative example, we apply these results to a conditional quantum gate, by determining the optimal condition giving rise to non-classicality at maximum speed.
arXiv Detail & Related papers (2024-02-12T11:28:56Z) - Quantum coherence from Kirkwood-Dirac nonclassicality, some bounds, and operational interpretation [0.0]
We develop a faithful quantifier of quantum coherence based on the KD nonclassicality.
The KD-nonclassicality coherence captures simultaneously the nonreality and the negativity of the KD quasiprobability.
arXiv Detail & Related papers (2023-09-17T05:29:49Z) - Upper Bounds on the Distillable Randomness of Bipartite Quantum States [15.208790082352351]
distillable randomness of a bipartite quantum state is an information-theoretic quantity.
We prove measures of classical correlations and prove a number of their properties.
We then further bound these measures from above by some that are efficiently computable by means of semi-definite programming.
arXiv Detail & Related papers (2022-12-18T12:06:25Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quantum uncertainty as classical uncertainty of real-deterministic
variables constructed from complex weak values and a global random variable [0.0]
We construct a class of real-deterministic c-valued variables out of the weak values obtained via a non-perturbing weak measurement of quantum operators.
We show that this class of c-valued physical quantities'' provides a real-deterministic contextual hidden variable model for the quantum expectation value of a certain class of operators.
arXiv Detail & Related papers (2021-06-21T22:43:26Z) - Gentle Measurement as a Principle of Quantum Theory [9.137554315375919]
We propose the gentle measurement principle (GMP) as one of the principles at the foundation of quantum mechanics.
We show, within the framework of general probabilistic theories, that GMP imposes strong restrictions on the law of physics.
arXiv Detail & Related papers (2021-03-28T11:59:49Z) - Weak measurements, non-classicality and negative probability [0.0]
It has been shown that nonexistence of a classical joint probability scheme gives rise to sufficiency conditions for nonlocality.
The crux of the paper is that the pseudo-probabilities, which can take negative values, can be directly measured as anomalous weak values.
arXiv Detail & Related papers (2020-06-22T17:08:05Z) - Entanglement as upper bounded for the nonlocality of a general two-qubit
system [16.676050048472963]
We systematically investigate the relationship between entanglement and nonlocality of a general two-qubit system.
We find that the nonlocality of two different two-qubit states can be optimally stimulated by the same nonlocality test setting.
arXiv Detail & Related papers (2020-04-17T16:42:27Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.