Crowdsourcing the Perception of Machine Teaching
- URL: http://arxiv.org/abs/2002.01618v1
- Date: Wed, 5 Feb 2020 03:20:25 GMT
- Title: Crowdsourcing the Perception of Machine Teaching
- Authors: Jonggi Hong, Kyungjun Lee, June Xu, Hernisa Kacorri
- Abstract summary: Teachable interfaces can empower end-users to attune machine learning systems to their idiosyncratic characteristics and environment.
While facilitating control, their effectiveness can be hindered by the lack of expertise or misconceptions.
We investigate how users may conceptualize, experience, and reflect on their engagement in machine teaching by deploying a mobile teachable testbed in Amazon Mechanical Turk.
- Score: 17.94519906313517
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Teachable interfaces can empower end-users to attune machine learning systems
to their idiosyncratic characteristics and environment by explicitly providing
pertinent training examples. While facilitating control, their effectiveness
can be hindered by the lack of expertise or misconceptions. We investigate how
users may conceptualize, experience, and reflect on their engagement in machine
teaching by deploying a mobile teachable testbed in Amazon Mechanical Turk.
Using a performance-based payment scheme, Mechanical Turkers (N = 100) are
called to train, test, and re-train a robust recognition model in real-time
with a few snapshots taken in their environment. We find that participants
incorporate diversity in their examples drawing from parallels to how humans
recognize objects independent of size, viewpoint, location, and illumination.
Many of their misconceptions relate to consistency and model capabilities for
reasoning. With limited variation and edge cases in testing, the majority of
them do not change strategies on a second training attempt.
Related papers
- Adaptive Teaching in Heterogeneous Agents: Balancing Surprise in Sparse Reward Scenarios [3.638198517970729]
Learning from Demonstration can be an efficient way to train systems with analogous agents.
However, naively replicating demonstrations that are out of bounds for the Student's capability can limit efficient learning.
We present a Teacher-Student learning framework specifically tailored to address the challenge of heterogeneity between the Teacher and Student agents.
arXiv Detail & Related papers (2024-05-23T05:52:42Z) - Learning Reusable Manipulation Strategies [86.07442931141634]
Humans demonstrate an impressive ability to acquire and generalize manipulation "tricks"
We present a framework that enables machines to acquire such manipulation skills through a single demonstration and self-play.
These learned mechanisms and samplers can be seamlessly integrated into standard task and motion planners.
arXiv Detail & Related papers (2023-11-06T17:35:42Z) - A Survey of Demonstration Learning [0.0]
Demonstration Learning is a paradigm in which an agent learns to perform a task by imitating the behavior of an expert shown in demonstrations.
It is gaining significant traction due to having tremendous potential for learning complex behaviors from demonstrations.
Due to learning without interacting with the environment, demonstration learning would allow the automation of a wide range of real world applications such as robotics and healthcare.
arXiv Detail & Related papers (2023-03-20T15:22:10Z) - Planning for Learning Object Properties [117.27898922118946]
We formalize the problem of automatically training a neural network to recognize object properties as a symbolic planning problem.
We use planning techniques to produce a strategy for automating the training dataset creation and the learning process.
We provide an experimental evaluation in both a simulated and a real environment.
arXiv Detail & Related papers (2023-01-15T09:37:55Z) - Blind Users Accessing Their Training Images in Teachable Object
Recognizers [12.833745050235047]
MyCam is a mobile app that incorporates automatically estimated descriptors for non-visual access to the photos in the users' training sets.
We demonstrate that the real-time photo-level descriptors enabled blind users to reduce photos with cropped objects, and that participants could add more variations by iterating through and accessing the quality of their training sets.
arXiv Detail & Related papers (2022-08-16T21:59:48Z) - Understanding Robustness in Teacher-Student Setting: A New Perspective [42.746182547068265]
Adrial examples are machine learning models where bounded adversarial perturbation could mislead the models to make arbitrarily incorrect predictions.
Extensive studies try to explain the existence of adversarial examples and provide ways to improve model robustness.
Our studies could shed light on the future exploration about adversarial examples, and enhancing model robustness via principled data augmentation.
arXiv Detail & Related papers (2021-02-25T20:54:24Z) - PsiPhi-Learning: Reinforcement Learning with Demonstrations using
Successor Features and Inverse Temporal Difference Learning [102.36450942613091]
We propose an inverse reinforcement learning algorithm, called emphinverse temporal difference learning (ITD)
We show how to seamlessly integrate ITD with learning from online environment interactions, arriving at a novel algorithm for reinforcement learning with demonstrations, called $Psi Phi$-learning.
arXiv Detail & Related papers (2021-02-24T21:12:09Z) - Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling [19.24454872492008]
Weak supervision offers a promising alternative for producing labeled datasets without ground truth labels.
We develop the first framework for interactive weak supervision in which a method proposes iterations and learns from user feedback.
Our experiments demonstrate that only a small number of feedback are needed to train models that achieve highly competitive test set performance.
arXiv Detail & Related papers (2020-12-11T00:10:38Z) - Combining Self-Training and Self-Supervised Learning for Unsupervised
Disfluency Detection [80.68446022994492]
In this work, we explore the unsupervised learning paradigm which can potentially work with unlabeled text corpora.
Our model builds upon the recent work on Noisy Student Training, a semi-supervised learning approach that extends the idea of self-training.
arXiv Detail & Related papers (2020-10-29T05:29:26Z) - Visual Imitation Made Easy [102.36509665008732]
We present an alternate interface for imitation that simplifies the data collection process while allowing for easy transfer to robots.
We use commercially available reacher-grabber assistive tools both as a data collection device and as the robot's end-effector.
We experimentally evaluate on two challenging tasks: non-prehensile pushing and prehensile stacking, with 1000 diverse demonstrations for each task.
arXiv Detail & Related papers (2020-08-11T17:58:50Z) - Never Stop Learning: The Effectiveness of Fine-Tuning in Robotic
Reinforcement Learning [109.77163932886413]
We show how to adapt vision-based robotic manipulation policies to new variations by fine-tuning via off-policy reinforcement learning.
This adaptation uses less than 0.2% of the data necessary to learn the task from scratch.
We find that our approach of adapting pre-trained policies leads to substantial performance gains over the course of fine-tuning.
arXiv Detail & Related papers (2020-04-21T17:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.