Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling
- URL: http://arxiv.org/abs/2012.06046v2
- Date: Mon, 25 Jan 2021 20:03:15 GMT
- Title: Interactive Weak Supervision: Learning Useful Heuristics for Data
Labeling
- Authors: Benedikt Boecking, Willie Neiswanger, Eric Xing, Artur Dubrawski
- Abstract summary: Weak supervision offers a promising alternative for producing labeled datasets without ground truth labels.
We develop the first framework for interactive weak supervision in which a method proposes iterations and learns from user feedback.
Our experiments demonstrate that only a small number of feedback are needed to train models that achieve highly competitive test set performance.
- Score: 19.24454872492008
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Obtaining large annotated datasets is critical for training successful
machine learning models and it is often a bottleneck in practice. Weak
supervision offers a promising alternative for producing labeled datasets
without ground truth annotations by generating probabilistic labels using
multiple noisy heuristics. This process can scale to large datasets and has
demonstrated state of the art performance in diverse domains such as healthcare
and e-commerce. One practical issue with learning from user-generated
heuristics is that their creation requires creativity, foresight, and domain
expertise from those who hand-craft them, a process which can be tedious and
subjective. We develop the first framework for interactive weak supervision in
which a method proposes heuristics and learns from user feedback given on each
proposed heuristic. Our experiments demonstrate that only a small number of
feedback iterations are needed to train models that achieve highly competitive
test set performance without access to ground truth training labels. We conduct
user studies, which show that users are able to effectively provide feedback on
heuristics and that test set results track the performance of simulated
oracles.
Related papers
- Multimodal Information Bottleneck for Deep Reinforcement Learning with Multiple Sensors [10.454194186065195]
Reinforcement learning has achieved promising results on robotic control tasks but struggles to leverage information effectively.
Recent works construct auxiliary losses based on reconstruction or mutual information to extract joint representations from multiple sensory inputs.
We argue that compressing information in the learned joint representations about raw multimodal observations is helpful.
arXiv Detail & Related papers (2024-10-23T04:32:37Z) - An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models [55.01592097059969]
Supervised finetuning on instruction datasets has played a crucial role in achieving the remarkable zero-shot generalization capabilities.
Active learning is effective in identifying useful subsets of samples to annotate from an unlabeled pool.
We propose using experimental design to circumvent the computational bottlenecks of active learning.
arXiv Detail & Related papers (2024-01-12T16:56:54Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
We introduce Action-Aware Embodied Learning for Perception (ALP)
ALP incorporates action information into representation learning through a combination of optimizing a reinforcement learning policy and an inverse dynamics prediction objective.
We show that ALP outperforms existing baselines in several downstream perception tasks.
arXiv Detail & Related papers (2023-06-16T21:51:04Z) - The Trade-off between Universality and Label Efficiency of
Representations from Contrastive Learning [32.15608637930748]
We show that there exists a trade-off between the two desiderata so that one may not be able to achieve both simultaneously.
We provide analysis using a theoretical data model and show that, while more diverse pre-training data result in more diverse features for different tasks, it puts less emphasis on task-specific features.
arXiv Detail & Related papers (2023-02-28T22:14:33Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - TRAIL: Near-Optimal Imitation Learning with Suboptimal Data [100.83688818427915]
We present training objectives that use offline datasets to learn a factored transition model.
Our theoretical analysis shows that the learned latent action space can boost the sample-efficiency of downstream imitation learning.
To learn the latent action space in practice, we propose TRAIL (Transition-Reparametrized Actions for Imitation Learning), an algorithm that learns an energy-based transition model.
arXiv Detail & Related papers (2021-10-27T21:05:00Z) - Diverse Complexity Measures for Dataset Curation in Self-driving [80.55417232642124]
We propose a new data selection method that exploits a diverse set of criteria that quantize interestingness of traffic scenes.
Our experiments show that the proposed curation pipeline is able to select datasets that lead to better generalization and higher performance.
arXiv Detail & Related papers (2021-01-16T23:45:02Z) - Self-Supervised Contrastive Learning for Efficient User Satisfaction
Prediction in Conversational Agents [35.2098736872247]
We propose a self-supervised contrastive learning approach to learn user-agent interactions.
We show that the pre-trained models using the self-supervised objective are transferable to the user satisfaction prediction.
We also propose a novel few-shot transfer learning approach that ensures better transferability for very small sample sizes.
arXiv Detail & Related papers (2020-10-21T18:10:58Z) - Sense and Learn: Self-Supervision for Omnipresent Sensors [9.442811508809994]
We present a framework named Sense and Learn for representation or feature learning from raw sensory data.
It consists of several auxiliary tasks that can learn high-level and broadly useful features entirely from unannotated data without any human involvement in the tedious labeling process.
Our methodology achieves results that are competitive with the supervised approaches and close the gap through fine-tuning a network while learning the downstream tasks in most cases.
arXiv Detail & Related papers (2020-09-28T11:57:43Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.