Adaptive Teaching in Heterogeneous Agents: Balancing Surprise in Sparse Reward Scenarios
- URL: http://arxiv.org/abs/2405.14199v1
- Date: Thu, 23 May 2024 05:52:42 GMT
- Title: Adaptive Teaching in Heterogeneous Agents: Balancing Surprise in Sparse Reward Scenarios
- Authors: Emma Clark, Kanghyun Ryu, Negar Mehr,
- Abstract summary: Learning from Demonstration can be an efficient way to train systems with analogous agents.
However, naively replicating demonstrations that are out of bounds for the Student's capability can limit efficient learning.
We present a Teacher-Student learning framework specifically tailored to address the challenge of heterogeneity between the Teacher and Student agents.
- Score: 3.638198517970729
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning from Demonstration (LfD) can be an efficient way to train systems with analogous agents by enabling ``Student'' agents to learn from the demonstrations of the most experienced ``Teacher'' agent, instead of training their policy in parallel. However, when there are discrepancies in agent capabilities, such as divergent actuator power or joint angle constraints, naively replicating demonstrations that are out of bounds for the Student's capability can limit efficient learning. We present a Teacher-Student learning framework specifically tailored to address the challenge of heterogeneity between the Teacher and Student agents. Our framework is based on the concept of ``surprise'', inspired by its application in exploration incentivization in sparse-reward environments. Surprise is repurposed to enable the Teacher to detect and adapt to differences between itself and the Student. By focusing on maximizing its surprise in response to the environment while concurrently minimizing the Student's surprise in response to the demonstrations, the Teacher agent can effectively tailor its demonstrations to the Student's specific capabilities and constraints. We validate our method by demonstrating improvements in the Student's learning in control tasks within sparse-reward environments.
Related papers
- RILe: Reinforced Imitation Learning [60.63173816209543]
RILe is a novel trainer-student system that learns a dynamic reward function based on the student's performance and alignment with expert demonstrations.
RILe enables better performance in complex settings where traditional methods falter, outperforming existing methods by 2x in complex simulated robot-locomotion tasks.
arXiv Detail & Related papers (2024-06-12T17:56:31Z) - Beyond Joint Demonstrations: Personalized Expert Guidance for Efficient Multi-Agent Reinforcement Learning [54.40927310957792]
We introduce a novel concept of personalized expert demonstrations, tailored for each individual agent or, more broadly, each individual type of agent within a heterogeneous team.
These demonstrations solely pertain to single-agent behaviors and how each agent can achieve personal goals without encompassing any cooperative elements.
We propose an approach that selectively utilizes personalized expert demonstrations as guidance and allows agents to learn to cooperate.
arXiv Detail & Related papers (2024-03-13T20:11:20Z) - Co-Supervised Learning: Improving Weak-to-Strong Generalization with
Hierarchical Mixture of Experts [81.37287967870589]
We propose to harness a diverse set of specialized teachers, instead of a single generalist one, that collectively supervises the strong student.
Our approach resembles the classical hierarchical mixture of experts, with two components tailored for co-supervision.
We validate the proposed method through visual recognition tasks on the OpenAI weak-to-strong benchmark and additional multi-domain datasets.
arXiv Detail & Related papers (2024-02-23T18:56:11Z) - Learn to Teach: Improve Sample Efficiency in Teacher-student Learning
for Sim-to-Real Transfer [5.731477362725785]
We propose a sample efficient learning framework termed Learn to Teach (L2T) that recycles experience collected by the teacher agent.
We show that a single-loop algorithm can train both the teacher and student agents under both Reinforcement Learning and Inverse Reinforcement Learning contexts.
arXiv Detail & Related papers (2024-02-09T21:16:43Z) - Distantly-Supervised Named Entity Recognition with Adaptive Teacher
Learning and Fine-grained Student Ensemble [56.705249154629264]
Self-training teacher-student frameworks are proposed to improve the robustness of NER models.
In this paper, we propose an adaptive teacher learning comprised of two teacher-student networks.
Fine-grained student ensemble updates each fragment of the teacher model with a temporal moving average of the corresponding fragment of the student, which enhances consistent predictions on each model fragment against noise.
arXiv Detail & Related papers (2022-12-13T12:14:09Z) - Explainable Action Advising for Multi-Agent Reinforcement Learning [32.49380192781649]
Action advising is a knowledge transfer technique for reinforcement learning based on the teacher-student paradigm.
We introduce Explainable Action Advising, in which the teacher provides action advice as well as associated explanations indicating why the action was chosen.
This allows the student to self-reflect on what it has learned, enabling generalization advice and leading to improved sample efficiency and learning performance.
arXiv Detail & Related papers (2022-11-15T04:15:03Z) - The Wits Intelligent Teaching System: Detecting Student Engagement
During Lectures Using Convolutional Neural Networks [0.30458514384586394]
The Wits Intelligent Teaching System (WITS) aims to assist lecturers with real-time feedback regarding student affect.
A CNN based on AlexNet is successfully trained and which significantly outperforms a Support Vector Machine approach.
arXiv Detail & Related papers (2021-05-28T12:59:37Z) - Privacy-Preserving Teacher-Student Deep Reinforcement Learning [23.934121758649052]
We develop a private mechanism that protects the privacy of the teacher's training dataset.
We empirically show that the algorithm improves the student's learning upon convergence rate and utility.
arXiv Detail & Related papers (2021-02-18T20:15:09Z) - Bridging the Imitation Gap by Adaptive Insubordination [88.35564081175642]
We show that when the teaching agent makes decisions with access to privileged information, this information is marginalized during imitation learning.
We propose 'Adaptive Insubordination' (ADVISOR) to address this gap.
ADVISOR dynamically weights imitation and reward-based reinforcement learning losses during training, enabling on-the-fly switching between imitation and exploration.
arXiv Detail & Related papers (2020-07-23T17:59:57Z) - Reinforcement Learning with Supervision from Noisy Demonstrations [38.00968774243178]
We propose a novel framework to adaptively learn the policy by jointly interacting with the environment and exploiting the expert demonstrations.
Experimental results in various environments with multiple popular reinforcement learning algorithms show that the proposed approach can learn robustly with noisy demonstrations.
arXiv Detail & Related papers (2020-06-14T06:03:06Z) - Dual Policy Distillation [58.43610940026261]
Policy distillation, which transfers a teacher policy to a student policy, has achieved great success in challenging tasks of deep reinforcement learning.
In this work, we introduce dual policy distillation(DPD), a student-student framework in which two learners operate on the same environment to explore different perspectives of the environment.
The key challenge in developing this dual learning framework is to identify the beneficial knowledge from the peer learner for contemporary learning-based reinforcement learning algorithms.
arXiv Detail & Related papers (2020-06-07T06:49:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.