論文の概要: Monocular 3D Object Detection with Decoupled Structured Polygon
Estimation and Height-Guided Depth Estimation
- arxiv url: http://arxiv.org/abs/2002.01619v2
- Date: Wed, 9 Jun 2021 04:20:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 21:38:51.321641
- Title: Monocular 3D Object Detection with Decoupled Structured Polygon
Estimation and Height-Guided Depth Estimation
- Title(参考訳): デカップリング構造多角形推定と高さ誘導深さ推定による単眼3次元物体検出
- Authors: Yingjie Cai, Buyu Li, Zeyu Jiao, Hongsheng Li, Xingyu Zeng, Xiaogang
Wang
- Abstract要約: 本稿では,検出問題を構造化ポリゴン予測タスクと深度回復タスクに分解する新しい統合フレームワークを提案する。
広く使われている3Dバウンディングボックスの提案と比較すると、3D検出のためのより良い表現であることが示されている。
KITTIベンチマークにおいて,本手法が最先端検出精度を実現するための実験を行った。
- 参考スコア(独自算出の注目度): 41.29145717658494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monocular 3D object detection task aims to predict the 3D bounding boxes of
objects based on monocular RGB images. Since the location recovery in 3D space
is quite difficult on account of absence of depth information, this paper
proposes a novel unified framework which decomposes the detection problem into
a structured polygon prediction task and a depth recovery task. Different from
the widely studied 2D bounding boxes, the proposed novel structured polygon in
the 2D image consists of several projected surfaces of the target object.
Compared to the widely-used 3D bounding box proposals, it is shown to be a
better representation for 3D detection. In order to inversely project the
predicted 2D structured polygon to a cuboid in the 3D physical world, the
following depth recovery task uses the object height prior to complete the
inverse projection transformation with the given camera projection matrix.
Moreover, a fine-grained 3D box refinement scheme is proposed to further
rectify the 3D detection results. Experiments are conducted on the challenging
KITTI benchmark, in which our method achieves state-of-the-art detection
accuracy.
- Abstract(参考訳): モノクロ3Dオブジェクト検出タスクは、モノクロRGB画像に基づいてオブジェクトの3D境界ボックスを予測することを目的としている。
深度情報がないため3次元空間における位置回復は極めて困難であるため,本研究では,検出問題を構造化ポリゴン予測タスクと深度回復タスクに分解する統一的な枠組みを提案する。
広く研究されている2Dバウンディングボックスとは異なり、2D画像における新規な構造化ポリゴンは、対象物体の複数の投影面から構成される。
広く使われている3Dバウンディングボックスの提案と比較すると、3D検出のためのより良い表現であることが示されている。
予測された2次元多角形を3次元物理界の立方体に逆投影するために、次の深度復元タスクは、所定のカメラ投影行列で逆投影変換を完了する前に物体高さを使用する。
さらに, 3次元検出結果をさらに補正するために, 細粒度3次元ボックスリファインメントスキームを提案する。
KITTIベンチマークにおいて,本手法が最先端検出精度を実現するための実験を行った。
関連論文リスト
- General Geometry-aware Weakly Supervised 3D Object Detection [62.26729317523975]
RGB画像と関連する2Dボックスから3Dオブジェクト検出器を学習するための統合フレームワークを開発した。
KITTIとSUN-RGBDデータセットの実験により,本手法は驚くほど高品質な3次元境界ボックスを2次元アノテーションで生成することを示した。
論文 参考訳(メタデータ) (2024-07-18T17:52:08Z) - OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object
Detection [51.153003057515754]
OPA-3Dは、Occlusion-Aware Pixel-Wise Aggregationネットワークである。
密集した風景深度と、奥行きのある箱残量と物の境界箱を共同で推定する。
メインカーのカテゴリーでは最先端の手法よりも優れています。
論文 参考訳(メタデータ) (2022-11-02T14:19:13Z) - Voxel-based 3D Detection and Reconstruction of Multiple Objects from a
Single Image [22.037472446683765]
入力画像から3次元特徴持ち上げ演算子を用いて3次元シーン空間に整合した3次元ボクセル特徴の正規格子を学習する。
この3Dボクセルの特徴に基づき,新しいCenterNet-3D検出ヘッドは3D空間におけるキーポイント検出として3D検出を定式化する。
我々は、粗度ボキセル化や、新しい局所PCA-SDF形状表現を含む、効率的な粗度から細度の再構成モジュールを考案する。
論文 参考訳(メタデータ) (2021-11-04T18:30:37Z) - Learning Geometry-Guided Depth via Projective Modeling for Monocular 3D Object Detection [70.71934539556916]
射影モデルを用いて幾何学誘導深度推定を学習し, モノクル3次元物体検出を推し進める。
具体的には,モノクロ3次元物体検出ネットワークにおける2次元および3次元深度予測の投影モデルを用いた原理的幾何式を考案した。
本手法は, 適度なテスト設定において, 余分なデータを2.80%も加えることなく, 最先端単分子法の検出性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-07-29T12:30:39Z) - MonoGRNet: A General Framework for Monocular 3D Object Detection [23.59839921644492]
幾何学的推論によるモノクロ画像からのアモーダル3次元物体検出のためのMonoGRNetを提案する。
MonoGRNetは、モノラル3Dオブジェクト検出タスクを2Dオブジェクト検出、インスタンスレベルの深さ推定、投影された3Dセンター推定、ローカルコーナー回帰を含む4つのサブタスクに分解する。
KITTI、Cityscapes、MS COCOデータセットで実験が行われた。
論文 参考訳(メタデータ) (2021-04-18T10:07:52Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
我々は,高密度な対応や幾何学を自己教師型で学習する,新しい3次元オブジェクト検出フレームワークMonoRUnを提案する。
提案手法は,KITTIベンチマークの最先端手法より優れている。
論文 参考訳(メタデータ) (2021-03-23T15:03:08Z) - Monocular Differentiable Rendering for Self-Supervised 3D Object
Detection [21.825158925459732]
単分子画像からの3次元物体検出は、深さとスケールの射影的絡み合いにより不適切な問題である。
テクスチャ化された3次元形状の再構成と剛体物体のポーズ推定のための新しい自己教師手法を提案する。
本手法は,画像中の物体の3次元位置とメッシュを,異なるレンダリングと自己教師対象を用いて予測する。
論文 参考訳(メタデータ) (2020-09-30T09:21:43Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
モノクロ3次元物体検出は、2次元入力画像から物体の位置と特性を抽出することを目的としている。
従来のアプローチでは、空間から3D境界ボックスをサンプリングし、対象オブジェクトと各オブジェクトの関係を推定するが、有効サンプルの確率は3D空間で比較的小さい。
我々は,まず最初の予測から始めて,各ステップで1つの3dパラメータだけを変えて,基礎的真理に向けて徐々に洗練することを提案する。
これは、いくつかのステップの後に報酬を得るポリシーを設計する必要があるため、最適化するために強化学習を採用します。
論文 参考訳(メタデータ) (2020-08-31T17:10:48Z) - Cylinder3D: An Effective 3D Framework for Driving-scene LiDAR Semantic
Segmentation [87.54570024320354]
大規模運転シーンのLiDARセマンティックセマンティックセグメンテーションのための最先端の手法は、しばしば2D空間の点雲を投影して処理する。
3D-to-2Dプロジェクションの問題に取り組むための簡単な解決策は、3D表現を保ち、3D空間の点を処理することである。
我々は3次元シリンダー分割と3次元シリンダー畳み込みに基づくフレームワークをCylinder3Dとして開発し,3次元トポロジの関係と運転シーンの点雲の構造を利用する。
論文 参考訳(メタデータ) (2020-08-04T13:56:19Z) - Object-Aware Centroid Voting for Monocular 3D Object Detection [30.59728753059457]
本研究では, 深度を学習することなく, 終端から終端までトレーニング可能な単分子3次元物体検出器を提案する。
領域的外見の注意と幾何学的射影分布の両面を考慮した,新しいオブジェクト認識型投票手法が導入された。
遅延融合と予測される3D方向と次元により、オブジェクトの3D境界ボックスは単一のRGB画像から検出できる。
論文 参考訳(メタデータ) (2020-07-20T02:11:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。