Structural Deep Clustering Network
- URL: http://arxiv.org/abs/2002.01633v3
- Date: Wed, 12 Feb 2020 13:27:06 GMT
- Title: Structural Deep Clustering Network
- Authors: Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu and Peng Cui
- Abstract summary: We propose a Structural Deep Clustering Network (SDCN) to integrate the structural information into deep clustering.
Specifically, we design a delivery operator to transfer the representations learned by autoencoder to the corresponding GCN layer.
In this way, the multiple structures of data, from low-order to high-order, are naturally combined with the multiple representations learned by autoencoder.
- Score: 45.370272344031285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Clustering is a fundamental task in data analysis. Recently, deep clustering,
which derives inspiration primarily from deep learning approaches, achieves
state-of-the-art performance and has attracted considerable attention. Current
deep clustering methods usually boost the clustering results by means of the
powerful representation ability of deep learning, e.g., autoencoder, suggesting
that learning an effective representation for clustering is a crucial
requirement. The strength of deep clustering methods is to extract the useful
representations from the data itself, rather than the structure of data, which
receives scarce attention in representation learning. Motivated by the great
success of Graph Convolutional Network (GCN) in encoding the graph structure,
we propose a Structural Deep Clustering Network (SDCN) to integrate the
structural information into deep clustering. Specifically, we design a delivery
operator to transfer the representations learned by autoencoder to the
corresponding GCN layer, and a dual self-supervised mechanism to unify these
two different deep neural architectures and guide the update of the whole
model. In this way, the multiple structures of data, from low-order to
high-order, are naturally combined with the multiple representations learned by
autoencoder. Furthermore, we theoretically analyze the delivery operator, i.e.,
with the delivery operator, GCN improves the autoencoder-specific
representation as a high-order graph regularization constraint and autoencoder
helps alleviate the over-smoothing problem in GCN. Through comprehensive
experiments, we demonstrate that our propose model can consistently perform
better over the state-of-the-art techniques.
Related papers
- Self-Supervised Contrastive Graph Clustering Network via Structural Information Fusion [15.293684479404092]
We propose a novel deep graph clustering method called CGCN.
Our approach introduces contrastive signals and deep structural information into the pre-training process.
Our method has been experimentally validated on multiple real-world graph datasets.
arXiv Detail & Related papers (2024-08-08T09:49:26Z) - Synergistic Deep Graph Clustering Network [14.569867830074292]
We propose a graph clustering framework named Synergistic Deep Graph Clustering Network (SynC)
In our approach, we design a Transform Input Graph Auto-Encoder (TIGAE) to obtain high-quality embeddings for guiding structure augmentation.
Notably, representation learning and structure augmentation share weights, significantly reducing the number of model parameters.
arXiv Detail & Related papers (2024-06-22T09:40:34Z) - Learning Invariant Representations of Graph Neural Networks via Cluster
Generalization [58.68231635082891]
Graph neural networks (GNNs) have become increasingly popular in modeling graph-structured data.
In this paper, we experimentally find that the performance of GNNs drops significantly when the structure shift happens.
We propose the Cluster Information Transfer (CIT) mechanism, which can learn invariant representations for GNNs.
arXiv Detail & Related papers (2024-03-06T10:36:56Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - XAI for Self-supervised Clustering of Wireless Spectrum Activity [0.5809784853115825]
We propose a methodology for explaining deep clustering, self-supervised learning architectures.
For the representation learning part, our methodology employs Guided Backpropagation to interpret the regions of interest of the input data.
For the clustering part, the methodology relies on Shallow Trees to explain the clustering result.
Finally, a data-specific visualizations part enables connection for each of the clusters to the input data trough the relevant features.
arXiv Detail & Related papers (2023-05-17T08:56:43Z) - Deep Image Clustering with Contrastive Learning and Multi-scale Graph
Convolutional Networks [58.868899595936476]
This paper presents a new deep clustering approach termed image clustering with contrastive learning and multi-scale graph convolutional networks (IcicleGCN)
Experiments on multiple image datasets demonstrate the superior clustering performance of IcicleGCN over the state-of-the-art.
arXiv Detail & Related papers (2022-07-14T19:16:56Z) - Attention-driven Graph Clustering Network [49.040136530379094]
We propose a novel deep clustering method named Attention-driven Graph Clustering Network (AGCN)
AGCN exploits a heterogeneous-wise fusion module to dynamically fuse the node attribute feature and the topological graph feature.
AGCN can jointly perform feature learning and cluster assignment in an unsupervised fashion.
arXiv Detail & Related papers (2021-08-12T02:30:38Z) - Deep Fusion Clustering Network [38.540761683389135]
We propose a Deep Fusion Clustering Network (DFCN) for deep clustering.
In our network, an interdependency learning-based Structure and Attribute Information Fusion (SAIF) module is proposed to explicitly merge the representations learned by an autoencoder and a graph autoencoder.
Experiments on six benchmark datasets have demonstrated that the proposed DFCN consistently outperforms the state-of-the-art deep clustering methods.
arXiv Detail & Related papers (2020-12-15T09:37:59Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.